mmzaj
- 107
- 0
greetings . we have the integral :
\lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds
which diverges for every value of n except n=0
if we perform the change of variables :
s\rightarrow \frac{1}{s}
then :
\lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds=\int_{-i}^{i}\frac{(1-s)^{n}}{s^{n+1}}ds
which converges . am i missing something here , or is this correct !?
\lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds
which diverges for every value of n except n=0
if we perform the change of variables :
s\rightarrow \frac{1}{s}
then :
\lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds=\int_{-i}^{i}\frac{(1-s)^{n}}{s^{n+1}}ds
which converges . am i missing something here , or is this correct !?