Can the Ricci Scalar Depend on Spacetime Coordinates?

  • Thread starter Thread starter div curl F= 0
  • Start date Start date
  • Tags Tags
    Ricci scalar Scalar
div curl F= 0
Messages
18
Reaction score
0
Does it make sense for the Ricci Scalar to be a function of the spacetime coordinates?

In previous calculations I have carried out in the past, everytime the Ricci Scalar has been returned as a constant, rather than being explicitly dependent on the coordinates.

Thanks for any replies
 
Physics news on Phys.org
The value of the Ricci scalar can be computed using only the metric tensor, and the components of the metric tensor may or may not vary with spacetime coordinates. So a Ricci scalar might change as your coordinates change, but it might not. Due to all the contractions, the Ricci scalar might be constant even if the components of the metric change (as with the surface of a sphere), but this varies from case to case.
 
Thank you for your reply. My metric does indeed vary with the coordinates.
 
I think in the general Lemaitre-Tolman-Bondi spacetimes you will find that the Ricci tensor is proportional to the density of the dust configuration, and therefore you can tune it to whatever you like. Give 'em a go with GRtensor =]

* C. W. Misner and D. H. Sharp. Relativistic equations for adiabatic, spherically
symmetric gravitational collapse. Phys. Rev., 136:B571, October 1964.

* S. Gon¸calves. Shell crossing in generalized Tolman-Bondi spacetimes. Phys. Rev. D,
63(12):124017, June 2001.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Back
Top