Can the Risch Algorithm Determine Integrability of Functions Like ∫x^x dx?

  • Thread starter Thread starter Maths Lover
  • Start date Start date
Maths Lover
Messages
67
Reaction score
0
if dy/dx = x^x , find y ?

or

find
∫x^x dx

?
 
Physics news on Phys.org
That cannot be integrated in terms of elementary functions.

Where did you get that problem?
 
HallsofIvy said:
That cannot be integrated in terms of elementary functions.

Is there a way enable us to know that a function F can be intergrated in terms of elementary functions or not ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top