Can the value of a function at a point of discontinuity vary among authors?

  • Thread starter Thread starter spaghetti3451
  • Start date Start date
  • Tags Tags
    Functions
AI Thread Summary
The value of a function at a point of discontinuity can vary among authors due to differing definitions and interpretations. Some authors may define the function at that point as undefined or use an average of surrounding values, while others may not consider it significant. The presence of vertical lines in graphs at discontinuities is often a graphical error, as they imply multivalued functions, which contradicts the single-valued nature of functions. The area beneath a finite number of points is always zero, a principle supported by classical geometry. Overall, while these discrepancies exist, they highlight the need for clarity in mathematical definitions and representations.
spaghetti3451
Messages
1,311
Reaction score
31
In their definitions, the value of the function at the point of discontinuity varies from one author to another. Why is this the case?

Also, the authors draw a vertical line at the point of discontinuity. Isn't this incorrect? (surely, the function cannot be drawn as multivalued if it is single-valued in the definition?)

I am also wondering if the function can have multiple values at the point of discontinuity.

Thanks in advance!
 
Mathematics news on Phys.org
failexam said:
In their definitions, the value of the function at the point of discontinuity varies from one author to another. Why is this the case?

The reason that we want to study step functions is because we're interested in the surfac area beneath the function. But I think it's easy to see that the surface area beneath a finite number of points is always zero. So if you change a finite number of points in a function, then the surface area will not change. So what value we take doesn't really matter, and this is the reason that it's allowed for different authors to define the value at the point of discontinuity differently.

Also, the authors draw a vertical line at the point of discontinuity. Isn't this incorrect? (surely, the function cannot be drawn as multivalued if it is single-valued in the definition?)

No, this is not correct. Can you give me a reference to an author that actually does this, because I don't think I've ever seen such a thing.

I think that the problem is with the graphing software. Often it can not draw discontinuities, but it can only draw a vertical line. But this is a mistake, the vertical line shouldn't be there.

I am also wondering if the function can have multiple values at the point of discontinuity.

No, this is not allowed.
What some authors do however, is not to define the function at the point of discontinuity, since it doesn't matter. But I also don't consider this to be very rigorous and I don't like it...
 
The definition of f(a) varies, somtimes it is undefined, somtimes something like (f(a-)+f(a+))/2 because that is what Fourier series give. Sometimes he funcion is made continuous by smothing then the line is not vertical it only looks vertical. Even when the discontinuity is kept the vertical like is not incorrect, but it does not belong to the function, it is just to show the discontinuity. In many cases the actual value is unimportant.
 
micromass said:
But I think it's easy to see that the surface area beneath a finite number of points is always zero. So if you change a finite number of points in a function, then the surface area will not change.

Shouldn't there at least be some finite non-zero area beneath the finite number of points even if it might be negligibly small? I ask this becuase you say that the area under those points is zero.

micromass said:
No, this is not correct. Can you give me a reference to an author that actually does this, because I don't think I've ever seen such a thing.

In drawing a square wave, for instance. See http://en.wikipedia.org/wiki/Square_wave. I agree this is not a textbook digram, but then again every teacher draws a vertical line at the point od discontinuity. What should I believe?
 
failexam said:
Shouldn't there at least be some finite non-zero area beneath the finite number of points even if it might be negligibly small? I ask this becuase you say that the area under those points is zero.

No, the area under a finite number of points is always zero. This is not just true in integrals, but it already follows from classical geometry: imagine a rectangle with two sides, one side is 5 meters long, the other is 0 meters long. Then the area of the rectangle is 0x5 meters2. Thus the area of the rectangle is 0m2.

The tricky question is: how do you define the concept of area? This is a very interesting questions with a number of answers. But every answer will agree that the area under a point is zero. I know this may sound counterintuitive, but it's something that needs to be like that.
The point is that these diagrams are mostly used by engineers. And I don't mean to say anything bad about engineers, but their notation and rigor may be a bit sloppy at times...
In drawing a square wave, for instance. See http://en.wikipedia.org/wiki/Square_wave. I agree this is not a textbook digram, but then again every teacher draws a vertical line at the point od discontinuity. What should I believe?

I see... Well, I've seen these diagrams before. But they're actually "wrong": the straight lines don't need to be there. However, many authors already use these diagrams, so nobody will change it. You simply need to remember that the straight lines are not really there...
 
Thanks!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top