sophiecentaur said:
The idea of the spatial nature of photons needs to be treated
with care. There is the risk of a picture in the mind of a
'short sperm-like squiggle'. That's really not much better
than the 'little bullet' picture.
I think of photons as short sperm-like squiggles.
Although the squiggles are electromagnetic, not spatial in the
transverse direction. But ultimately I'm trying to find out
whether photons have length. I know they are often treated as
pointlike. I'm going to use an analogy with the sperm-like
squiggle to describe my mental picture. I'm not asking whether
this picture is correct or not. If it has problems I will be
happy to hear them. But at the moment I'm just trying to find
out whether the wavelength and frequency of individual photons
can be measured, because it was previously my belief that they
cannot. I am surprised to learn that they may be measurable.
That would be awesome!
A photon cannot change over time. Time does not exist in the
photon's reference frame. That means the wave nature of the
photon cannot be caused by the photon changing, such as pulsing
or moving up and down. Instead, the wave must be a fixed form
which moves as a whole, unchanging unit.
Here's the analogy. Draw a waveform on a scrap of paper, then
move the paper past you. You see the point on the wave that is
directly in front of you move up and down, while the wave itself
is unchanging. With light, made of photons, the changes in the
electromagnetic field represented by this up and down motion
cannot be observed. Even if the light comes straight at you,
and reaches your eye, you can't see the changes because a photon
can only be detected as a single interaction at a single point
in time, at a single point in space. The entire photon must reach
and be absorbed by the detector, or it is not detected. There is no
such thing as a part of a photon. But since we know the photon
must have a wavelength, I argue that this wavelength can only be
a property of the photon if the waveform has length.
That definite length is relative to the observer. Depending on
the relative motion of the light source and the observer, the
photon's wavelength will be longer or shorter, and so the photon
itself must be longer or shorter.
That's the idea I'm ultimately exploring, but again, at the
moment, I'm just trying to find out whether the wavelength can
be measured.
sophiecentaur said:
You can only talk about the properties of any photon after
the event, when it has been deleted.
I think we can talk about the properties at any time, but
we can only know what they are after they have been observed.
Did you mean "detected" rather than "deleted"?
A photon is deleted when it is detected, so both are true.
sophiecentaur said:
We can't know where they are or the effective path taken
until we see where they turn up.
Can we know the path even then? I thought that was also
unknowable at the level of individual photons.
sophiecentaur said:
One thing that is fairly reasonable, however, would be the
Energy (AKA frequency).
With my RF Engineer's hat on, I have a problem, even with
that idea. A photon that's emitted by an atom with one energy
transition doesn't need (by logic) to be absorbed / detected
at its destination by a precisely identical (tautology on
purpose) atom; there has to be a Bandwidth involved - as with
your familiar transmitter and receiver set up. That will
presumably show itself as a probability distribution of the
interaction of the incident photon and the receptor. If, as
we believe, all photons are identical except for their Energy
then how does that translate to things like coherence length
of a photon beam? I find that confusing.
Saying "all photons are identical" raises another question:
Can the polarization of a single photon be measured?
-- Jeff, in Minneapolis