gnome
- 1,031
- 1
I want to prove (A \supset B) \wedge (B \supset C) \wedge (D \supset \neg C) \wedge (A \vee D) \equiv (B \vee \neg C)<br />
so I have to show that \neg ( ((A \supset B) \wedge (B \supset C) \wedge (D \supset \neg C) \wedge (A \vee D)) \supset (B \vee \neg C))
is inconsistent, and I proceed as follows:
\begin{array}{ccccccccccc}\neg ( ((A \supset B) &\wedge &(B \supset C) &\wedge &(D \supset \neg C) &\wedge &(A \vee D)) &\supset (B \vee \neg C))\\<br /> <br /> \neg ( \neg((A \supset B) &\wedge &(B \supset C) &\wedge &(D \supset \neg C) &\wedge &(A \vee D)) &\vee &(B \vee \neg C))\\<br /> <br /> ((A \supset B) &, &(B \supset C) &, &(D \supset \neg C) &, &(A \vee D)) &, &\neg (B \vee \neg C))\\<br /> <br /> (\neg A \vee B) &, &(\neg B \vee C) &, &(\neg D \vee \neg C) &, &(A \vee D) &, &\neg B&, &C))\\<br /> <br /> \text{contradiction}&, &\neg B &, &\neg D&, &A &, &\neg B &, &C<br /> <br /> \end{array}
so I end up with a contradiction showing that the original statement is correct.
Question: is there a "better", more formal way to present this proof?
so I have to show that \neg ( ((A \supset B) \wedge (B \supset C) \wedge (D \supset \neg C) \wedge (A \vee D)) \supset (B \vee \neg C))
is inconsistent, and I proceed as follows:
\begin{array}{ccccccccccc}\neg ( ((A \supset B) &\wedge &(B \supset C) &\wedge &(D \supset \neg C) &\wedge &(A \vee D)) &\supset (B \vee \neg C))\\<br /> <br /> \neg ( \neg((A \supset B) &\wedge &(B \supset C) &\wedge &(D \supset \neg C) &\wedge &(A \vee D)) &\vee &(B \vee \neg C))\\<br /> <br /> ((A \supset B) &, &(B \supset C) &, &(D \supset \neg C) &, &(A \vee D)) &, &\neg (B \vee \neg C))\\<br /> <br /> (\neg A \vee B) &, &(\neg B \vee C) &, &(\neg D \vee \neg C) &, &(A \vee D) &, &\neg B&, &C))\\<br /> <br /> \text{contradiction}&, &\neg B &, &\neg D&, &A &, &\neg B &, &C<br /> <br /> \end{array}
so I end up with a contradiction showing that the original statement is correct.
Question: is there a "better", more formal way to present this proof?
Last edited: