Can Trig Functions Satisfy These Conditions for Even and Odd Numbers?

  • Thread starter Thread starter mohamadh95
  • Start date Start date
  • Tags Tags
    Function
mohamadh95
Messages
43
Reaction score
0
is there any function h(x) that satisfies these conditions:
h(x)=0 when x is even
h(x)=1 when x is odd
and is there there any function g(x) such that:
g(x)=0 when x is odd
g(x)=1 when x is even
thank you.
 
Physics news on Phys.org
What's the desired domain? If it's only \mathbb{Z} think about the expression (-1)^x!
 
vanhees71 said:
What's the desired domain? If it's only \mathbb{Z} think about the expression (-1)^x!
Thank you for your quick reply g(x) can be (1+(-1)^x)/2 and h(x) (1-(-1)^x)/2
 
The trig functions are quite nice if the domain is ℝ. For example, look at cos2(pi*x) or cos(2*pi*x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top