RandomMystery
- 69
- 0
\lim_{N\rightarrow\infty} \lim_{h\rightarrow 0} \frac{1}{N}\sum_{k=0}^N((kh)^h)^k=
and
Nh=L
h = L/N
and
Nh=L
h = L/N
micromass said:Hi RandomMystery!
\lim_ {N\rightarrow +\infty}{\lim_{h\rightarrow 0}{\frac{1}{N}\sum_{k=0}^N{(kh)^{hk}}}}=\lim_ {N\rightarrow +\infty}{\frac{1}{N}\sum_{k=0}^N{\left(\lim_{h \rightarrow 0}{(kh)^h}\right)^k}}
So, the first thing you need to do is evaluate
\lim_{h\rightarrow 0}{(kh)^h}
RandomMystery said:\lim_{N\rightarrow +\infty}{\frac{1}{N}\sum_{k=1}^L{1^k}}=1
L=Nh (it doesn't let me put two characters on top of the sigma)
It's 1^k right? nvm it always equals 1.
Oh, I think that what I meant was from k=1 or 0 to k=Nh not N on the sigma sign.
So, is what I wrote above right? It can't be right though.
\lim_ {N\rightarrow +\infty}{\lim_{h\rightarrow 0}{\frac{1}{N}\sum_{k=0}^N{(kh)^{hk}}}}=\lim_ {N\rightarrow +\infty}{\frac{1}{N}\sum_{k=0}^N{\left(\lim_{h \rightarrow 0}{(kh)^h}\right)^k}}= \frac{\int_0^{L}{x^x}dx}{L}
Nh=L
I know that the average value of that function can not be 1 all the time.
I don't know how to prove this though (I just learned series yesterday remember).
Maybe this will fix it...
\lim_ {N\rightarrow +\infty}{\lim_{h\rightarrow 0}{\frac{1}{N}\sum_{k=0}^N{(kh)^{hk}}}}=\lim_ {N\rightarrow +\infty}{\frac{1}{N}\sum_{k=0}^N{(\frac{L}{N}k)^{(\frac{Lk}{N})}}}= \frac{\int_0^{L}{x^x}dx}{L}
RandomMystery said:Maybe we need to define some new function/constant?
\lim_ {N\rightarrow \infty}(\frac{L}{N}k)^\frac{Lk}{N}= "f" or "e II"