MHB Can you find the length of ON using Pythagoras and similarity?

  • Thread starter Thread starter alextrainer
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
The discussion focuses on calculating the length of segment ON using the properties of right triangles and similarity. The Pythagorean theorem is applied to find the hypotenuse of a smaller triangle, resulting in a length of approximately 46.65. By establishing the similarity between the larger and smaller triangles, a proportion is set up to determine the length of ON, leading to a calculated value of 30. Additionally, the Pythagorean theorem is used again to find the length of segment OP, resulting in an expression involving the square root of 34. The discussion effectively demonstrates the application of geometric principles to solve for unknown lengths.
alextrainer
Messages
10
Reaction score
0
In attached file, I understand 50 is the base; no idea how to use the 24 height to calculate length of ON - must have to do with property of right triangles?

View attachment 6367
 

Attachments

  • geo.jpg
    geo.jpg
    19.7 KB · Views: 116
Mathematics news on Phys.org
These are, of course, right triangles so you can use the Pythagorean theorem To determine the length of the hypotenuse of the small triangle. Then, since the angles of the large and small triangles are the same, they are similar triangles. Corresponding parts of the two right triangles are proportional.
 
HallsofIvy said:
These are, of course, right triangles so you can use the Pythagorean theorem To determine the length of the hypotenuse of the small triangle. Then, since the angles of the large and small triangles are the same, they are similar triangles. Corresponding parts of the two right triangles are proportional.

Thanks for the smaller triangle I get hypotenuse of 46.65. Then each leg and hypotenuse is multipled by a proportion?

So larger triangle would be 50 leg - no idea how to figure height or hypotenuse unless I multiple by 10/40 percent all the known lengths.
 
Let:

$$\overline{NO}=x$$

Then, by similarity, we may state:

$$\frac{x}{50}=\frac{24}{40}=\frac{3}{5}$$

Hence:

$$x=50\cdot\frac{3}{5}=10\cdot3=30$$

And then by Pythagoras:

$$\overline{OP}=\sqrt{30^2+50^2}=10\sqrt{3^2+5^2}=10\sqrt{34}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top