MHB Can you help me find the third zero of this complex polynomial?

  • Thread starter Thread starter TheFallen018
  • Start date Start date
  • Tags Tags
    Complex Polynomial
TheFallen018
Messages
52
Reaction score
0
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too. So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1. None of these seem right.

So, here's the question.

View attachment 8177

Any help would be amazing. Thank you :)
 

Attachments

  • Screenshot_15.jpg
    Screenshot_15.jpg
    7 KB · Views: 100
Mathematics news on Phys.org
TheFallen018 said:
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too. So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1. None of these seem right.

So, here's the question.
Any help would be amazing. Thank you :)

Hi Fallen number 18! ;)

The fact that $-1+2i$ is a zero means that we can factorize the polynomial as $(z-(-1+i2))(z^2 +az+b)$.
When we expand that and match it to the polynomial, we can deduce the values of $a$ and $b$.
Care to try?
 
TheFallen018 said:
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too.
No, you can't. The theorem you are misremembering is that "if z is a zero of a polynomial with real coefficients then so is its conjugate." But this polynomial does not have real coefficients.

So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1.
Well, yes, with z= -1, z^2= 1, and z^3= -1 so the polynomial becomes -1+ 3- 2i- 3+ 4i+ 1- 2i= (-1+ 3- 3+ 1)+ (-2i+ 4i- 2i)= 0.

None of these seem right.

So, here's the question.
Any help would be amazing. Thank you :)
The fact that -1+ 2i is a root means that x+ 1- 2i will divide into z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) evenly- with no remainder.

In fact, dividing z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) by z+ 1- 2i gives a quotient of z^2+ 2z+ 1= (z+ 1)^2. The zeros of z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) are -1 and -1+ 2i with -1 being a double zero.
 
Last edited:
I like Serena said:
Hi Fallen number 18! ;)

The fact that $-1+2i$ is a zero means that we can factorize the polynomial as $(z-(-1+i2))(z^2 +az+b)$.
When we expand that and match it to the polynomial, we can deduce the values of $a$ and $b$.
Care to try?

I actually already tried this method. I must have done something wrong the first time, because I didn't get the same answer when I did it just now. It worked out to be $(z-(-1+i2))(z^2 +2z+1)$ which worked nicely in the quadratic formula and got me the right answer. Thanks!

Country Boy said:
No, you can't. The theorem you are misremembering is that "if z is a zero of a polynomial with real coefficients then so is its conjugate." But this polynomial does not have real coefficients. Well, yes, with z= -1, z^2= 1, and z^3= -1 so the polynomial becomes -1+ 3- 2i- 3+ 4i+ 1- 2i= (-1+ 3- 3+ 1)+ (-2i+ 4i- 2i)= 0.The fact that -1+ 2i is a root means that x+ 1- 2i will divide into z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) evenly- with no remainder.

In fact, dividing z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) by z+ 1- 2i gives a quotient of z^2+ 2z+ 1= (z+ 1)^2. The zeros of z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) are -1 and -1+ 2i with -1 being a double zero.

I really like this method. It hadn't occurred to me to factorise the z terms that way. It makes dividing really easy, and then it's just a matter of using the quadratic formula. Thanks for the insight on this one, I'll be using it again for sure.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top