Can you help me find the third zero of this complex polynomial?

  • Context: MHB 
  • Thread starter Thread starter TheFallen018
  • Start date Start date
  • Tags Tags
    Complex Polynomial
Click For Summary
SUMMARY

The discussion centers around finding the third zero of a degree 3 complex polynomial given one zero, specifically -1 + 2i. Participants clarify that while complex roots have conjugates, the polynomial in question does not have real coefficients, which affects the application of the fundamental theorem of algebra. The correct approach involves factoring the polynomial as (z - (-1 + 2i))(z^2 + 2z + 1), leading to the conclusion that the zeros are -1 and -1 + 2i, with -1 being a double zero.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with polynomial equations and their roots
  • Knowledge of the fundamental theorem of algebra
  • Ability to factor polynomials and apply the quadratic formula
NEXT STEPS
  • Study complex polynomial factorization techniques
  • Learn about the implications of complex roots in polynomials with non-real coefficients
  • Explore the quadratic formula and its applications in finding polynomial roots
  • Investigate the fundamental theorem of algebra in greater detail
USEFUL FOR

Mathematicians, students studying complex analysis, educators teaching polynomial equations, and anyone interested in advanced algebraic concepts.

TheFallen018
Messages
52
Reaction score
0
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too. So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1. None of these seem right.

So, here's the question.

View attachment 8177

Any help would be amazing. Thank you :)
 

Attachments

  • Screenshot_15.jpg
    Screenshot_15.jpg
    7 KB · Views: 111
Physics news on Phys.org
TheFallen018 said:
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too. So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1. None of these seem right.

So, here's the question.
Any help would be amazing. Thank you :)

Hi Fallen number 18! ;)

The fact that $-1+2i$ is a zero means that we can factorize the polynomial as $(z-(-1+i2))(z^2 +az+b)$.
When we expand that and match it to the polynomial, we can deduce the values of $a$ and $b$.
Care to try?
 
TheFallen018 said:
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too.
No, you can't. The theorem you are misremembering is that "if z is a zero of a polynomial with real coefficients then so is its conjugate." But this polynomial does not have real coefficients.

So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1.
Well, yes, with z= -1, z^2= 1, and z^3= -1 so the polynomial becomes -1+ 3- 2i- 3+ 4i+ 1- 2i= (-1+ 3- 3+ 1)+ (-2i+ 4i- 2i)= 0.

None of these seem right.

So, here's the question.
Any help would be amazing. Thank you :)
The fact that -1+ 2i is a root means that x+ 1- 2i will divide into z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) evenly- with no remainder.

In fact, dividing z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) by z+ 1- 2i gives a quotient of z^2+ 2z+ 1= (z+ 1)^2. The zeros of z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) are -1 and -1+ 2i with -1 being a double zero.
 
Last edited:
I like Serena said:
Hi Fallen number 18! ;)

The fact that $-1+2i$ is a zero means that we can factorize the polynomial as $(z-(-1+i2))(z^2 +az+b)$.
When we expand that and match it to the polynomial, we can deduce the values of $a$ and $b$.
Care to try?

I actually already tried this method. I must have done something wrong the first time, because I didn't get the same answer when I did it just now. It worked out to be $(z-(-1+i2))(z^2 +2z+1)$ which worked nicely in the quadratic formula and got me the right answer. Thanks!

Country Boy said:
No, you can't. The theorem you are misremembering is that "if z is a zero of a polynomial with real coefficients then so is its conjugate." But this polynomial does not have real coefficients. Well, yes, with z= -1, z^2= 1, and z^3= -1 so the polynomial becomes -1+ 3- 2i- 3+ 4i+ 1- 2i= (-1+ 3- 3+ 1)+ (-2i+ 4i- 2i)= 0.The fact that -1+ 2i is a root means that x+ 1- 2i will divide into z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) evenly- with no remainder.

In fact, dividing z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) by z+ 1- 2i gives a quotient of z^2+ 2z+ 1= (z+ 1)^2. The zeros of z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i) are -1 and -1+ 2i with -1 being a double zero.

I really like this method. It hadn't occurred to me to factorise the z terms that way. It makes dividing really easy, and then it's just a matter of using the quadratic formula. Thanks for the insight on this one, I'll be using it again for sure.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K