A Can you numerically calculate the stress-energy tensor from the metric?

quickAndLucky
Messages
32
Reaction score
3
About 10 years ago I worked on a project where I took a mater distribution and numerically solved for spatial curvature. Can this be done in the opposite direction?

Can anybody point me to a resource that would allow me to calculate matter distributions when the metric is specified?

What are the tools used in numerical relativity today?
 
Physics news on Phys.org
If you literally mean to specify a metric and calculate the required stress-energy then it's trivial, just a lot of partial derivatives. As long as your metric is twice differentiable in each of the coordinates then you can grind your way through it analytically if you want. Any GR textbook will have the maths. Sean Carroll's lecture notes are free online and have the necessary (edit: even Wikipedia will do the job). Typically, though, the resulting stress-energy tensor isn't really plausible - negative energy densities and the like.

If you want a plausible stress-energy distribution then you end up having to write differential equations for the dynamics of the stress-energy and feed that into the Einstein field equations, and that isn't much different from what you did ten years ago. You wouldn't be specifying the metric so much as specifying the relationship between the metric and the stress-energy distribution and then solving the resulting differential equations.
 
  • Like
Likes quickAndLucky
Great thanks will have a look at Carrol. I'm specifically interested in metrics of closed spaces where boundary points are identified, like a cylinder or tourus. Any extra complications you think ill run into because of strange boundary conditions?
 
As far as I'm aware you are effectively applying periodic boundary conditions to a topologically simple spacetime. As long as you use coordinates where the repetition is easy to specify I don't see why there'd be a problem. I've given that all of five minutes' thought, though, so I wouldn't bet too heavily on it. Some searching on arXiv would probably be worthwhile.
 
  • Like
Likes quickAndLucky
quickAndLucky said:
About 10 years ago I worked on a project where I took a mater distribution and numerically solved for spatial curvature. Can this be done in the opposite direction?

Can anybody point me to a resource that would allow me to calculate matter distributions when the metric is specified?

What are the tools used in numerical relativity today?

From the metric g_uv, you calculate the Einstein tensor G_uv. This can be done analytically, though I suppose you could do it numerically. You might have noise issues from computing the second order partial derivateves numerically, though.

Then ## T_{uv} = \frac{c^4}{8 \pi G} G_{uv}## by Einstein's field equations.

For an analytical analysis, you can use programs such as GRTensor, Maxima, or Mathematica. Maxima is free, GRTensor requires the non-free Maple to run, and is showing it's age. I haven't use Mathematica's tensor packages, they should be well maintained, but I'm not sure what features they have.
 
  • Like
Likes quickAndLucky
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top