Townsend
- 232
- 0
Show that for each complex sequence c_1, c_2, ..., c_n and for each integer 1 \leq H < N one has the inequality
<br /> | \sum_{n=1}^N c_n|^2 \leq \frac{4N}{H+1} ( \sum_{n=1}^N |c_n|^2 + \sum_{h=1}^H | \rho_N(h)|)<br />
Any one...matt grime perhaps?
note: if anyone actually wants to work this out let me know and I will fill in the missing parts...but don't ask me to do it...
<br /> | \sum_{n=1}^N c_n|^2 \leq \frac{4N}{H+1} ( \sum_{n=1}^N |c_n|^2 + \sum_{h=1}^H | \rho_N(h)|)<br />
Any one...matt grime perhaps?

note: if anyone actually wants to work this out let me know and I will fill in the missing parts...but don't ask me to do it...

Last edited: