Ravenatic20
- 30
- 0
This is what I have so far:
\int (\frac{x^2}{\sqrt{4 + x^2}}) dx
x = 2 tan u
dx = (2 sec^2u) du
x^2 = 4 tan^2 u
\sqrt{4 + x^2} = \sqrt{4 + 4 tan^2 u}
\sqrt{4 + x^2} = \sqrt{4 (1 + tan^2 u}
\sqrt{4 + x^2} = \sqrt{4 sec^2 u}
\sqrt{4 + x^2} = 2 sec u
Then I have:
\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int \frac{4 tan^2 u}{2 sec u} 2 sec^2 u du
\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int (4 tan^2 u)(sec u) du
I keep getting stuck on this part, any ideas?
\int (\frac{x^2}{\sqrt{4 + x^2}}) dx
x = 2 tan u
dx = (2 sec^2u) du
x^2 = 4 tan^2 u
\sqrt{4 + x^2} = \sqrt{4 + 4 tan^2 u}
\sqrt{4 + x^2} = \sqrt{4 (1 + tan^2 u}
\sqrt{4 + x^2} = \sqrt{4 sec^2 u}
\sqrt{4 + x^2} = 2 sec u
Then I have:
\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int \frac{4 tan^2 u}{2 sec u} 2 sec^2 u du
\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int (4 tan^2 u)(sec u) du
I keep getting stuck on this part, any ideas?