A Canonical quantization of Electrodynamics: physical intuition ?

maajdl
Gold Member
Messages
391
Reaction score
29
TL;DR Summary
Going from Poisson brakets to commutators is very easy but not very intuitive.
Hello,

I am freshly retired and enjoy going back to the fundamentals.
I followed the wonderful courses by Alain Aspect on Coursera on Quantum Optics 1 and 2 .
The quantization of Electrodynamics is really easy stuff.
Just follow the correspondence between Poisson brakets and Commutators ... and start counting photons !

This correspondence principle comes with some intuition when it is applied to electrons or particles.
This is because the conjugated variables x and p are intuitive from classical mecanics,
and because of the packet wave view which brings its own intuition.

However, when discovering that q and p are conjugated variables for a mode in Electrodynamics,
there is apparently no bonus intuition that come together.
At least because q and p are not the position and momentum of a particle.
Quantization remains easy, but looks a bit like magics!
(specially with the creation and annihilation operators!)

Therefore I am looking for some intuition about the Canonical quantization of Electrodynamics!
Would you have some suggestion?

Thanks

Michel
 
Physics news on Phys.org
maajdl said:
Therefore I am looking for some intuition about the Canonical quantization of Electrodynamics!
Would you have some suggestion?
To build the missing intuition, do the following in the prescribed order:
1. Do canonical quantization of a single harmonic oscillator, you will find it intuitive because it's just a special case of canonical quantization of a particle.
2. Do canonical quantization of a chain of ##N## coupled harmonic oscillators, it's intuitive because it's still about ##N## particles.
3. In 2. the distance between the neighboring particles in the chain is ##a##. Consider the limit ##a\rightarrow 0## and ##N\rightarrow\infty##, with ##Na## kept finite. This limit corresponds to the continuum.
4. Do canonical quantization of a scalar field in 1 spatial dimension and observe that it looks exactly like 3. The conceptual relation between 3. and 4. is the most important step in this intuition building.
5. Do canonical quantization of a scalar field in 3 spatial dimensions, it's just a straightforward generalization of 4.
6. Do canonical quantization of a massive vector field in 3 spatial dimensions, it's just a straightforward generalization of 5.
7. Do canonical quantization of a massless vector field in 3 spatial dimensions, which is nothing but canonical quantization of electrodynamics.
 
  • Like
Likes maajdl and Mentz114
Good idea.
The analogy with a chain of oscillator, is very intuitive indeed, since it is pure mechanics.
I should also remember the analogies Maxwell and other at that time had in mind when building electrodynamics.
A canonical change of variable and the usual correspondence principle will do the job.

Would you think one could also recover a story like that abour wave packets ?
In other words, what about the commutation relations?

Thanks!
 
maajdl said:
Would you think one could also recover a story like that abour wave packets ?
In other words, what about the commutation relations?
I'm not sure what's the problem/question here?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top