Can't tell what I am overcounting

  • Thread starter Thread starter Samuelb88
  • Start date Start date
Samuelb88
Messages
160
Reaction score
0

Homework Statement


Compute the probability of achieving 4 distinct face values when you roll 4 dice at most twice.

The Attempt at a Solution


Let Ei denote the event of rolling i distinct face values. Then:
P(E_4) = \frac{6 \cdot 5 \cdot 4 \cdot 3}{6^4}

A roll of 3 distinct face values would look like (x,x,y,z). So there would be \binom{4}{2} choices for the repeat value to appear, and:
P(E_3) = \frac{\binom{4}{2} 6 \cdot 5 \cdot 4}{6^4}

A roll of 2 distinct face values would look like (x,x,y,y), or (x,x,x,y). So:
P(E_3) = \frac{\binom{4}{2} 6 \cdot 5 + \binom{4}{3} 6 5}{6^4}

There are six ways to roll (x,x,x,x). So:
P(E_3) = \frac{6}{6^4}

I need to check that \sum_{i=1}^4 P(E_i) = 1. But:
\sum_{i=1}^4 P(E_i) = 77/72

Would some be so kind to tell me how I've counted wrong?
 
Physics news on Phys.org
So I've identified the problem. I counted (x,x,y,y) twice.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top