What is the potential difference and charge on capacitors connected in series?

AI Thread Summary
The discussion revolves around calculating the potential difference and charge on capacitors connected in series after being charged to different voltages. Two capacitors, 2.50uF at 857V and 6.80uF at 652V, are connected with their positive and negative plates joined. The charge on each capacitor is calculated using the formula Q=CV, resulting in charges of 0.0021C and 0.0044C. Participants express uncertainty about the next steps, including whether to use potential energy formulas to find the potential difference. The conversation highlights the need for clarity on charge conservation and the relationships between voltage, charge, and capacitance in series circuits.
mer584
Messages
37
Reaction score
0
I was hoping someone could help me approach this problem.

A 2.50uF capacitor is charged to 857V and a 6.80uF capacitor is charged to 652V. These capacitors are then disconnected from their batteries. Next the positive plates are connected to each other and the negative plates are connected to each other. What will be the potential difference across each and the charge on each? (note that charge is conserved)
 
Physics news on Phys.org
oops

Sorry, I don't know how to use this, this post should be moved to the homework help section.
What I started to do to attemp the problem was use the forumla Q=CV to find the charge that is occurring in each case finding Q1 = .0021C and Q2= .0044 C. I really wasnt sure if this was even helpful or where to go from there. It appears to be a uniform field so I know I can use V=Ed but we don't have a distance or an area in this problem.

In order to get the potential difference I know you need to work with Vb-Va and possibly the potential energy. Should I use PE= V/Q then subtract the potential energies to find the work and then the poential difference?
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top