Cardinalities of Sets: Prove |(0, 1)| = |(0, 2)| and |(0, 1)| = |(a, b)|

  • Thread starter Thread starter cxc001
  • Start date Start date
  • Tags Tags
    Sets
cxc001
Messages
15
Reaction score
0
How to prove the open intervals (0,1) and (0,2) have the same cardinalities? |(0, 1)| = |(0, 2)|

Let a, b be real numbers, where a<b. Prove that |(0, 1)| = |(a, b)|

-----------------------------------
|(0,1)| = |R| = c by Theorem
-----------------------------------

I know that we need to construct a function f: (0,1)->(0,2) and prove f is bijection so that |(0, 1)| = |(0, 2)|

same process of proving |(0, 1)| = |(a, b)|

but how to construct a function f: (0,1)->(0,2)
and how to construct a function g: (0,1)->(a,b) where a<b and a,b are real numbers?

I know how to construct a function f: (0,1)->R
by define a function f(x)=(1-2x)/[x(x-1)] where x cannot be 0 and 1 and when the middle domain(f)=1/2, f(1/2)=0

How can I expand this knowledge and to define a function that the domain(f) is within (0,1) and the range(f) falls into (0,2) or any close interval (a,b)?
 
Physics news on Phys.org
Try constructing a linear function from (0, 1) to (0, 2).
 
Yeah, my bet! a, b are real numbers

I've constructed a linear function f: (0,1)->(0,2) defined by f(x)=2x
such that f(1/2)=1, when x=1/2 (mid point of domain), y=1 (mid point of range)
This linear function is certainly bijection, therefore |(0,1)|=|(0,2)|

But how to prove |(0,1)|=|(a,b)| where a, b are real numbers and a<b?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
7
Views
1K
Replies
7
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
5
Views
2K
Replies
15
Views
2K
Back
Top