Cardinality Problem: Prove |A| < |N|

  • Thread starter Thread starter cxc001
  • Start date Start date
  • Tags Tags
    Cardinality
cxc001
Messages
15
Reaction score
0
Prove cardinality of every finite nonempty set A is less then cardinality of natural number N
|A|<|N|

set A is nonempty finite set
natural number N is denumerable (infinite countable set)

|A|<|N| if there exist a injective (one-to-one) function f: A->N, but NO bijective function, which means NO surjective (onto) function

How to prove it in detail?

Help please!
 
Physics news on Phys.org
Before trying to worry about how to prove it in detail, first worry about how to sketch a proof... or even just getting ideas to understand the situation better.

When you tell us where you're at on the problem, then we will be able to help you figure out how to get unstuck!
 
Okay, here is what I got so far.

There should be two steps that I need to prove to show |S|<|N|
step 1) to construct a injective function f:S->N
step 2) to prove the function f:S->N is NOT bijection (mainly NOT surjective function)

Step 1) I started with trying to contrust a injection f:S->N
Since S is finite nonempty set, then the elments of set S can be listed as S={s1, s2, s3,...,sn), and |S|=n
Since N is denumerable set by theorem (countable infinite set), then N={1, 2, 3,...,n,...}
Let f(s1)=1, f(s2)=2,...,f(sn)=n
In order to show the function is injecitive, I have to show two different elements have two different images which is if f(x)=f(y), then x=y (use proof by contrapositive method)
So Let f(x)=f(y), I need to show that x=y
[This is where I stucked, how should I go from there?]

For step 2) to prove the function f:S->N is NOT bijection (mainly NOT surjective function) seems quite complicated!
[I attemped to use the proof by contradiction first]
Assume by contradiction that there exists a bijective function f:S->N
[Then how I go from there? This is where I stucked again!]
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top