Car's maximum acceleration on a road is proportional to what?

Click For Summary

Homework Help Overview

The discussion revolves around the maximum acceleration of a car and the forces involved, particularly focusing on the role of friction between the tires and the road. Participants explore the implications of friction on acceleration and the application of Newton's laws of motion.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants examine the relationship between applied force, friction, and acceleration. Questions arise about the effects of friction on acceleration, the definitions of forces involved, and the interpretation of free-body diagrams. Some participants express confusion regarding the role of static versus kinetic friction in the context of the problem.

Discussion Status

The discussion is ongoing, with various interpretations being explored. Some participants have provided guidance on defining forces and using free-body diagrams, while others are questioning assumptions about friction and acceleration. There is no explicit consensus yet, but productive dialogue is occurring.

Contextual Notes

Participants are grappling with the definitions of forces and the implications of friction in the context of a car's acceleration. The conversation reflects a mix of theoretical understanding and practical application, with some participants noting the complexity of the interactions between the car and the road.

  • #91
bob012345 said:
I did not make that diagram nor originally post it but I reposted it to argue I thought it was wrong. Here is another free-body diagram I found of a wheel slowing down by rolling resistance. It looks like it would have a torque that would speed the wheel up but we know it does not so there is something about the way friction works at the point of contact that I'm just not getting. It is easy to see how ##F_{rr}## will act to slow down the wheel but I don't see how the torque ##RF_{rr}## acts in the correct direction. I wonder if it has something to do with the point of contact actually being the center of rotation? And where is the static friction in this diagram? The brain fog continues...
https://www.physicsforums.com/attachments/296631
https://archive.thepocketlab.com/educators/lesson/rolling-resistance-physics-lab
The Post #85 diagram shows rolling resistance as a simple horizontal force acting at the base of the wheel, vertically below the wheel's centre. This is an inaccurate simplfication and (as has already been noted) gives a torque which would tend to accelerate the wheel!

A better representation is this: https://www.lockhaven.edu/~dsimanek/scenario/rollres3.gif

For this diagram and accompanying explanation, see the section entitled “Rolling Resistance” about halfway down this link: https://www.lockhaven.edu/~dsimanek/scenario/rolling.htm
 
  • Like
Likes   Reactions: vela and bob012345
Physics news on Phys.org
  • #92
bob012345 said:
Ok, I resolved my brain fog issue over the free body diagram of the wheel alone. What bugged me in the diagram is that it looked like the blue Axle force to the right was exactly equal to the static friction force to the left which could not be true under acceleration. The total forces left and right are slightly different and total to a net force of the exact amount necessary to accelerate the wheel of mass ##m## by acceleration ##a##. Likewise the driving torque at the axle is greater than the counter torque due to all other torques by exactly the amount consistent with an angular acceleration ##\alpha= \large \frac{a}{R}##.View attachment 296601

The diagram is not a true free body diagram (FBD).

It's a simplified schematic version to explain the relationship between force and torque directions.

What is important to understand is that a rolling wheel can reverse the friction force direction by reversing the wheel torque, even if the rolling direction stays the same.

In an accurate FBD, yes, there would be wheel accelerations to consider (both linear and angular). BUT THIS IS IRRELEVANT TO THE PROBLEM AT HAND. It would only confuse the OP to make an FBD for each wheel and the car's body. Just imagine the wheel is massless and the car's body is heavier by the equivalent of the wheels' masses.

Rolling resistance should also be ignored for this discussion. IT IS IRRELEVANT TO THE PROBLEM AT HAND and can only confuse the OP.

I can't believe we have 91 posts in this discussion.
 
  • Like
Likes   Reactions: sysprog and hutchphd
  • #93
Here are 3 FBDs related to the one-wheel skateboard mentioned in post #21. To make things simple, only horizontal forces are shown.

##f_{\text{S}} = ~## force of static friction exerted by the road on the wheel.
##f_{\text{WB}}=~## contact force exerted by the wheel on the board at the axle.
##f_{\text{BW}}=~## contact force exerted by the board on the wheel at the axle.

To @rudransh verma:
The sum of the board and wheel FBDs is the FBD of the one-wheel skateboard. The board, the wheel and the combined board + wheel have a common acceleration ##a##. What is the net force in each case that provides this acceleration?

A picture is worth 103 words.

3 FBDs.png
 
  • Like
Likes   Reactions: bob012345
  • #95
kuruman said:
A picture is worth 103 words.
All preamble aside, what if one wishes to use the term "rolling friction"? Personally I would be inclined not to use it ever. Is there a reason to put it in the elementary curriculum (as yet another frictional force??) Just askin'
 
  • Like
Likes   Reactions: jbriggs444

Similar threads

Replies
46
Views
6K
  • · Replies 44 ·
2
Replies
44
Views
7K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
6
Views
3K