asimov42 said:
Hi all,
Silly question perhaps: I had understood that the energy density of the vacuum is constant throughout spacetime. But, with the Casimir effect, for example, the geometry of (real) matter (i.e., parallel plates), changes the vacuum energy density in between the plates - is this correct? (since only certain modes of the EM field are allowed between the plates)
So, if the vacuum energy density of various regions of space is influenced in various ways by the configuration of matter in that space, doesn't this wreck Lorentz invariance? I.e., you need to have a very specific vacuum energy spectrum to maintain Lorentz invariance, and if the spectrum between e.g., the plates is different, wouldn't this have implications for relativity if the plates were, e.g., accelerated?
The vacuum is defined as the state of lowest energy. Energy can be defined as an eigenvalue of Hamiltonian. But
which Hamiltonian? There are many different Hamiltonians used in physics, and hence there are many different "vacuums".
Some Hamiltonians are meant to be fundamental, describing "all" physics, or at least a large part of physics. Other Hamiltonians are merely effective Hamiltonians, describing only a small subset of all physical phenomena. Consequently, some vacuums are supposed to be fundamental, while other vacuums are merely effective vacuums.
The Casimir vacuum is one such effective vacuum. It is the lowest energy state for the system with Casimir plates at a fixed distance y. Clearly, such a vacuum is not fundamental, because in a fundamental vacuum there are no Casimir plates at all. The Casimir vacuum is the vacuum for the effective Hamiltonian, not for the fundamental Hamiltonian.
In what sense is this Hamiltonian not fundamental? In several senses. In this Hamiltonian
1. Only EM fields are quantized, while charged matter is treated as classical. (Technically, dielectric function ##\epsilon({\bf x},\omega)## is not a quantum operator.)
2. Only EM fields are dynamical, while charged matter is treated as a fixed background. (Technically, dielectric function ##\epsilon({\bf x},\omega)## is a fixed function.)
3. Even the distance y between the plates is treated as a fixed parameter. (Technically, it is a consequence of 2.)
The fact 3. is particularly important for the physical interpretation of Casimir effect. As long as y is fixed, there is
no Casimir effect at all. The Casimir effect is the force in the y-direction, and the existence of such a force requires y to be a
dynamical variable, not a fixed parameter. To make y dynamical, one must add a new kinetic term to the Hamiltonian. But with this new Hamiltonian, the Casimir energy is no longer the lowest possible energy. Instead, the energy can be further lowered by decreasing y. So
to describe Casimir effect by a Hamiltonian, Casimir energy cannot be a vacuum energy for that Hamiltonian.
The preceding paragraph can also be rephrased as follows. Parameter y cannot simultaneously be fixed and non-fixed. If it is fixed then Casimir energy can be interpreted as effective-vacuum energy, but in that case there is no Casimir effect. If it is not fixed then there is Casimir effect, but in that case Casimir energy cannot be interpreted as effective-vacuum energy. So Casimir effect cannot be consistently interpreted as being due to effective-vacuum energy.
Finally, a note on Lorentz invariance: The fundamental Hamiltonian is supposed to be Lorentz invariant (at least in the sense that the corresponding Lagrangian is Lorentz invariant). But effective Hamiltonian need not be Lorentz invariant. Consequently, effective vacuum also does not need to be Lorentz invariant.
For related issues at a more technical level see also
http://arxiv.org/abs/hep-th/0503158
http://arxiv.org/abs/1605.04143