Casimir effect excludes photon modes*, same for two slit interferometer?

Spinnor
Gold Member
Messages
2,227
Reaction score
419
Can we say that a point light source (turned off) together with a two slit interferometer and say a photographic plate detector exclude certain photon modes? Light does not go to certain parts of the photographic plate so can we say that the source (turned off), the interferometer, and the detector together modify the electromagnetic vacuum so that when the point light source is turned on photons don't arrive at some regions because those modes of light can not be produced by the light source?

Of course QED rules the land but does QED allow me to think as above?

* (In a thread it was pointed out that one does not have to think in the force in the Casimir effect as due to vacuum modes being excluded but in this thread let's assume so.)

I may be way out of line with my thinking, if so please help me get back in line.

Thanks for any help!
 
Last edited:
Physics news on Phys.org
Any two physical objects will experience the Casimir force and this can be calculated via the density of states due to the photon modes. If you consider your plate, detector, and source as physical entities, then they will disturb the photon modes by virtue of the fact that now any mode must conform to the boundary conditions instituted by these objects.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top