Cauchy -schwarz inequality help

  • Thread starter Thread starter dr hannibal
  • Start date Start date
  • Tags Tags
    Cauchy Inequality
dr hannibal
Messages
10
Reaction score
0
Need help proving Cauchy Schwarz inequality ...

the first method I know is pretty easy

\displaystyle\sum_{i=1}^n (a_ix-b_i)^2 \geq 0

expanding this and using the discriminatant quickly establishes the inequality..The 2nd method I know is I think a easier one , but I don't have a clue about how this notation works..

Since cauchy SHwarz inquality states..

(a_1b_1+a_2b_2+...+a_nb_n)^2 \leq ((a_1)^2+(a_2)^2+..+(a_n)^2)((b_1)^2+(b_2)^2+...+(b_n)^2)

((a_1)^2+(a_2)^2+..+(a_n)^2)((b_1)^2+(b_2)^2+...+(b_n)^2)-(a_1b_1+a_2b_2+...+a_nb_n)^2 \geq 0

I don't usnderstand how the below notation works as I can't follow from the above line to the line below , if someone can point me to some resources where I can know more about it :) ...\displaystyle\sum_{i\not=j}^n ((a_i)^2(b_j)^2+(a_j)^2(b_i)^2-2a_ib_ja_jb_i )Thanks
 
Last edited:
Mathematics news on Phys.org
That's just summing over the quantities within the parentheses for which the two indices i and j differ. Note that if i = j, the quantity inside the summation is just 0, so it does not contribute to the sum.
 
snipez90 said:
That's just summing over the quantities within the parentheses for which the two indices i and j differ. Note that if i = j, the quantity inside the summation is just 0, so it does not contribute to the sum.

thanks :) , one more small question when they have summed the above where is -2a_ib_ja_jb_i comming from?
 
(a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2​

Expanded out, convince yourself that whenever i ≠ j you get a 2aibiajbj. To do this, it helps to write out a simple case for small n (n = 2 or 3) and look at how what terms you get that involve i ≠ j. The sign in your example is negative, because you are subtracting.
 
Tedjn said:
(a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2​

Expanded out, convince yourself that whenever i ≠ j you get a 2aibiajbj. To do this, it helps to write out a simple case for small n (n = 2 or 3) and look at how what terms you get that involve i ≠ j. The sign in your example is negative, because you are subtracting.

thanks
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top