What Is the Force Law for Stars Moving in the Galaxy?

Gogsey
Messages
153
Reaction score
0
4. For a wide range of orbital radii, stars in the Galaxy (including our sun) move in nearly circular orbits with a speed v0 »220 km/s which is independent of the orbit's radius. Find the force law and the form of the potential energy function for a star moving through the Galaxy (it is not an inverse-square force because the mass of the Galaxy is not all concentrated at the centre; assume it is a central force). Then find an expression for the period of small radial oscillations; apply it to the orbit of the sun (r » 8 kpc) to get a value in years, and compare with the orbital period of the sun around the Galaxy. (A kiloparsec is about $3.086×1016 km.)

5. A satellite of mass m is initially moving at speed v0 in a circular orbit of radius r0 about a planet. Find, in terms of m, v0, and r0, the initial angular momentum, kinetic energy, potential energy, and total energy of the satellite (first, you may need to find the mass of the planet in terms of these quantities.) Then a rocket motor is fired briefly, changing the velocity vector by an amount Dv of magnitude |Dv| = v0/2. Find the angular momentum,
total energy, semimajor axis, and minimum and maximum distance from the planet's centre for the new orbit if Dv is:
a) opposite to v0, or b) radially inward. Give answers in terms of m, r0, and v0. (Hint: For part b), compare the energy and angular momentum at pericentre to the values immediately after the rocket burn, in terms of two unknowns: the speed and radius at pericentre.

Ok so I'm lost for the first question. I have no idea what iot wants me to do.

As for the second question I'm still working on it.
 
Physics news on Phys.org
Hi Gogsey

for the very first part i would ask what mass distribution m(r) gives a potential V(r) that results in a constant orbital velocity (equivalently what is the gravitational acceleration g(r), that gives constnat orbital velocity)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top