- #1
PFuser1232
- 479
- 20
We define the position of the centre of mass of a system of ##n## masses as:
$$\vec{r_{cm}} = \frac{\sum_{i=1}^n m_i \vec{r_i}}{\sum_{i=1}^n m_i}$$
Why is there no such thing as "centre of charge", defined for ##n## point charges:
$$\vec{r_{cq}} = \frac{\sum_{i=1}^n q_i \vec{r_i}}{\sum_{i=1}^n q_i}$$
$$\vec{r_{cm}} = \frac{\sum_{i=1}^n m_i \vec{r_i}}{\sum_{i=1}^n m_i}$$
Why is there no such thing as "centre of charge", defined for ##n## point charges:
$$\vec{r_{cq}} = \frac{\sum_{i=1}^n q_i \vec{r_i}}{\sum_{i=1}^n q_i}$$