Cesaro Sum. Understanding the sequence.

  • Thread starter Thread starter fatcrispy
  • Start date Start date
  • Tags Tags
    Sequence Sum
fatcrispy
Messages
24
Reaction score
0

Homework Statement


I have a finite sequence Z=(z1,...,zn). The Cesaro sum of Z is \frac{(B<sub>1</sub>+B<sub>2</sub>+...+B<sub>n</sub>)}{n}

BC=z1+z2+...zC (1\leqC\leqn)

Lets say the problem asks "The Cesaro sum of the 99th term sequence of (z1,...,z99) is 2000, what is the Cesaro sum of the 100 term sequence (1, z1,...,z99)?

Homework Equations


The Attempt at a Solution


I read about Cesaro sum on wikipedia but it didn't elaborate much. Here is where I'm at:

2000=\frac{(B<sub>1</sub>+B<sub>2</sub>+...+B<sub>99</sub>)}{99}

But, honestly, I have no idea how to solve this because I can't find any info on it.
 
Physics news on Phys.org
Call z1 + z2 +...+z99 = S

You are given that S/99 = 2000.

Now you are asked to calculate (1 + S)/100. It isn't that tough...
 
LCKurtz said:
Call z1 + z2 +...+z99 = S

You are given that S/99 = 2000.

Now you are asked to calculate (1 + S)/100. It isn't that tough...

So, putting 1 in front of the sequence allows z99 to become the 100th term? But it isn't the 100th nth term right? With what you said it would just be 1980.01 as the answer? I am trying to fundamentally understand this. I understand it's just an average but when they start saying the value of C could be lesser or equal to n and all of that I lose the concept.
 
fatcrispy said:
So, putting 1 in front of the sequence allows z99 to become the 100th term? But it isn't the 100th nth term right? With what you said it would just be 1980.01 as the answer?

Yes, that is the correct answer. Add a 1 to the sequence means there are now 101 terms to average.

I am trying to fundamentally understand this. I understand it's just an average but when they start saying the value of C could be lesser or equal to n and all of that I lose the concept.

The Cesaro sum of a sequence gives you a new sequence which gives cumulative average of the given sequence. One place they are used is in the study of divergent sequences. For example, the sequence 1, -1, 1, -1, 1,... diverges. But, informally, you might say its "average value" is 0. And that is exactly what the Cesaro sum sequence converges to.
 
LCKurtz said:
Yes, that is the correct answer. Add a 1 to the sequence means there are now 101 terms to average.

Big "oh..." moment. I think I misread the problem. It asks "what is the Cesaro sum of the 100th term sequence (1, z1, ..., z99)?" I realize now that it is the whole 100 term sequence and I don't actually have to go up to z100 right? Because the 1 in front makes it 100 terms.

LCKurtz said:
The Cesaro sum of a sequence gives you a new sequence which gives cumulative average of the given sequence. One place they are used is in the study of divergent sequences. For example, the sequence 1, -1, 1, -1, 1,... diverges. But, informally, you might say its "average value" is 0. And that is exactly what the Cesaro sum sequence converges to.

I understand this. It's just the technical definition that got me. Thanks!
 
Yes. It's 100 terms including the 1. I mistyped 101 earlier I see. I think you've got it now.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top