- 22,169
- 3,327
This challenge was suggested by jgens.
The ##n##th harmonic number is defined by
H_n = \sum_{k=1}^n \frac{1}{k}
Show that ##H_n## is never an integer if ##n\geq 2##.
The ##n##th harmonic number is defined by
H_n = \sum_{k=1}^n \frac{1}{k}
Show that ##H_n## is never an integer if ##n\geq 2##.