Change in Entropy of a Solid or Liquid

Click For Summary
The discussion centers on the relationship between entropy changes, temperature, and volume in solids and liquids. It is noted that for solids, volume changes have a negligible effect on entropy due to their rigid structure, while for liquids, increased volume allows for greater molecular arrangements, thus affecting entropy. The equations governing these changes are presented, indicating that the entropy variation can be expressed in terms of temperature and pressure changes. Anharmonic effects in solids are mentioned as a factor that can influence entropy despite the solid's fixed atomic positions. Overall, the consensus is that while temperature is a primary driver of entropy change, volume changes can also play a role, particularly in liquids.
Philip Koeck
Gold Member
Messages
801
Reaction score
229
What about if we allow for a temperature and volume change in a solid or a liquid?
Would the entropy change still only depend on the temperature change or also on the volume change.
For a solid I would think that the volume change doesn't matter since it doesn't change the "amount of disorder", but for a liquid the volume change should matter.
 
Last edited by a moderator:
Science news on Phys.org
Philip Koeck said:
What about if we allow for a temperature and volume change in a solid or a liquid?
Would the entropy change still only depend on the temperature change or also on the volume change.
For a solid I would think that the volume change doesn't matter since it doesn't change the "amount of disorder", but for a liquid the volume change should matter.
For a single phase pure substance or a constant composition mixture, the variation in entropy can be determined from $$dS=\frac{C_p}{T}dT+\left(\frac{\partial S}{\partial P}\right)_TdP$$It follows from the equation $$dG=-SdT+VdP$$ that the partial derivative of entropy with respect to pressure is given by:$$\left(\frac{\partial S}{\partial P}\right)_T=-\left(\frac{\partial V}{\partial T}\right)_P$$
For a liquid or solid, the equation of state is $$dV=V(\alpha dT-\beta dP)$$where ##\alpha## is the volumetric coefficient of thermal expansion and ##\beta## is the bulk compressibility. So, $$\left(\frac{\partial V}{\partial T}\right)_P=\alpha V$$So, we have:$$dS=\frac{C_p}{T}dT-\alpha VdP$$
Because the specific volume and coefficient of thermal expansion of solids and liquids are very small, in virtually all practical situations, the second term is negligible.
 
Last edited:
  • Like
Likes Philip Koeck
Chestermiller said:
For a single phase pure substance or a constant composition mixture, the variation in entropy can be determined from $$dS=\frac{C_p}{T}dT+\left(\frac{\partial S}{\partial P}\right)_TdP$$It follows from the equation $$dG=-SdT+VdP$$ that the partial derivative of entropy with respect to pressure is given by:$$\left(\frac{\partial S}{\partial P}\right)_T=-\left(\frac{\partial V}{\partial T}\right)_P$$
For a liquid or solid, the equation of state is $$dV=V(\alpha dT-\beta dP)$$where ##\alpha## is the volumetric coefficient of thermal expansion and ##\beta## is the bulk compressibility. So, $$\left(\frac{\partial V}{\partial T}\right)_P=\alpha V$$So, we have:$$dS=\frac{C_p}{T}dT-\alpha VdP$$
Because the specific volume and coefficient of thermal expansion of solids and liquids are very small, in virtually all practical situations, the second term is negligible.
I just quickly checked what that would give for an ideal gas (by replacing α and dP from the ideal gas law) and I get dS = n CV dT / T + n R dV / V, just like it should be. Very nice!

I'm wondering a bit about solids versus liquids.
For liquids I can understand that entropy changes with volume since a liquid can arrange itself in more different ways if it has more space.
For a solid, however, I don't see that. In a perfect crystal every atom is in its spot no matter how big the distance between atoms is. How can one explain the volume dependence of entropy then?
 
Philip Koeck said:
I just quickly checked what that would give for an ideal gas (by replacing α and dP from the ideal gas law) and I get dS = n CV dT / T + n R dV / V, just like it should be. Very nice!

I'm wondering a bit about solids versus liquids.
For liquids I can understand that entropy changes with volume since a liquid can arrange itself in more different ways if it has more space.
For a solid, however, I don't see that. In a perfect crystal every atom is in its spot no matter how big the distance between atoms is. How can one explain the volume dependence of entropy then?
Sorry, I'm a continuum mechanics guy, so analyzing it in terms of atoms and molecules is not part of my expertise.
 
Philip Koeck said:
For a solid, however, I don't see that. In a perfect crystal every atom is in its spot no matter how big the distance between atoms is. How can one explain the volume dependence of entropy then?

The main reason are anharmonic effects as the phonons have, for example, frequencies that depend on volume.
[PDF]Vibrational Thermodynamics of Materials - Caltech
 
  • Like
Likes Chestermiller and Philip Koeck

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 109 ·
4
Replies
109
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 60 ·
3
Replies
60
Views
10K
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K