- 5,197
- 38
Context: reducing a two-body problem to a one body problem (each body is a quantum particle, although this is not relevant to the parts of the problem I am stuck on
Griffiths QM, Problem 5.1
Typically the interaction potential depends only on the vector \mathbf{r} = \mathbf{r_1} - \mathbf{r_2} between the two particles. In that case, the Schrodinger equation separates if we change variables from \mathbf{r_1}, \mathbf{r_2} to \mathbf{r} and \mathbf{R} \equiv (m_1\mathbf{r_1} + m_2\mathbf{r_2})/m_1+m_2 (the centre of mass).
(a) Show that \mathbf{r_1} = \mathbf{R} + (\mu/m_1)\mathbf{r}, \mathbf{r_2} = \mathbf{R} - (\mu/m_2)\mathbf{r}, and \nabla_1 = (\mu/m_2)\nabla_R + \nabla_r, \nabla_2 = (\mu/m_1)\nabla_R - \nabla_r, where
\mu \equiv \frac{m_1m_2}{m_1 + m_2}
is the reduced mass of the system.
Already given
(a)
(i) \mathbf{r_1} = \mathbf{r} + \mathbf{r_2} = \mathbf{r} + \left(\frac{m_1 + m_2}{m_2}\mathbf{R} - \frac{m_1}{m_2}\mathbf{r_1} <br /> \right)
\mathbf{r_1}\left(1 + \frac{m_1}{m_2}\right) = \mathbf{r_1}\left(\frac{m_1 + m_2}{m_2}\right) = \left(\frac{m_1 + m_2}{m_2}\right)\mathbf{R} + \mathbf{r}
\longRightarrow \mathbf{r_1} = \mathbf{R} + \frac{m_2}{m_1 + m_2}\mathbf{r} = \mathbf{R} + \frac{\mu}{m_1}\mathbf{r}
(ii) \mathbf{r_2} = \mathbf{r_1} - \mathbf{r} = \mathbf{R} + \frac{\mu}{m_1}\mathbf{r} - \mathbf{r}
= \mathbf{R} + \left(\frac{\mu}{m_1} - 1 \right) \mathbf{r} = \mathbf{R} + \left(\frac{m_2}{m_1 + m_2} - \frac{m_1 + m_2}{m_1 + m_2} \right)\mathbf{r}
= \mathbf{R} - \left(\frac{m_1}{m_1 + m_2}\right)\mathbf{r} = \mathbf{R} - \frac{\mu}{m_2}\mathbf{r}
(iii) Now here's where I got stuck. I thought to start in cartesian coordinates:
\nabla_1 \equiv \mathbf{\hat{x}} \frac{\partial}{\partial x_1} + \mathbf{\hat{y}} \frac{\partial}{\partial y_1} + \mathbf{\hat{z}} \frac{\partial}{\partial z_1}
and then based on the relationships between x_1, x_R, and x_r obtained in the first part, I could find the answer. But if I do that, I just get:
\nabla_1 = \nabla_R + \frac{\mu}{m_1}\nabla_r
which is clearly not the right answer. Any tips for this section?
Homework Statement
Griffiths QM, Problem 5.1
Typically the interaction potential depends only on the vector \mathbf{r} = \mathbf{r_1} - \mathbf{r_2} between the two particles. In that case, the Schrodinger equation separates if we change variables from \mathbf{r_1}, \mathbf{r_2} to \mathbf{r} and \mathbf{R} \equiv (m_1\mathbf{r_1} + m_2\mathbf{r_2})/m_1+m_2 (the centre of mass).
(a) Show that \mathbf{r_1} = \mathbf{R} + (\mu/m_1)\mathbf{r}, \mathbf{r_2} = \mathbf{R} - (\mu/m_2)\mathbf{r}, and \nabla_1 = (\mu/m_2)\nabla_R + \nabla_r, \nabla_2 = (\mu/m_1)\nabla_R - \nabla_r, where
\mu \equiv \frac{m_1m_2}{m_1 + m_2}
is the reduced mass of the system.
Homework Equations
Already given
The Attempt at a Solution
(a)
(i) \mathbf{r_1} = \mathbf{r} + \mathbf{r_2} = \mathbf{r} + \left(\frac{m_1 + m_2}{m_2}\mathbf{R} - \frac{m_1}{m_2}\mathbf{r_1} <br /> \right)
\mathbf{r_1}\left(1 + \frac{m_1}{m_2}\right) = \mathbf{r_1}\left(\frac{m_1 + m_2}{m_2}\right) = \left(\frac{m_1 + m_2}{m_2}\right)\mathbf{R} + \mathbf{r}
\longRightarrow \mathbf{r_1} = \mathbf{R} + \frac{m_2}{m_1 + m_2}\mathbf{r} = \mathbf{R} + \frac{\mu}{m_1}\mathbf{r}
(ii) \mathbf{r_2} = \mathbf{r_1} - \mathbf{r} = \mathbf{R} + \frac{\mu}{m_1}\mathbf{r} - \mathbf{r}
= \mathbf{R} + \left(\frac{\mu}{m_1} - 1 \right) \mathbf{r} = \mathbf{R} + \left(\frac{m_2}{m_1 + m_2} - \frac{m_1 + m_2}{m_1 + m_2} \right)\mathbf{r}
= \mathbf{R} - \left(\frac{m_1}{m_1 + m_2}\right)\mathbf{r} = \mathbf{R} - \frac{\mu}{m_2}\mathbf{r}
(iii) Now here's where I got stuck. I thought to start in cartesian coordinates:
\nabla_1 \equiv \mathbf{\hat{x}} \frac{\partial}{\partial x_1} + \mathbf{\hat{y}} \frac{\partial}{\partial y_1} + \mathbf{\hat{z}} \frac{\partial}{\partial z_1}
and then based on the relationships between x_1, x_R, and x_r obtained in the first part, I could find the answer. But if I do that, I just get:
\nabla_1 = \nabla_R + \frac{\mu}{m_1}\nabla_r
which is clearly not the right answer. Any tips for this section?
Last edited: