Characteristic Polynomials and Nilpotent Operators

glacier302
Messages
34
Reaction score
0
If the characteristic polynomial of an operator T is (-1)^n*t^n, is T nilpotent?

My first instinct for this question is that the answer is yes, because the matrix form of T must have 0's on the diagonal and must be either upper triangular or lower triangular. This is what I found when I tried to find 2x2 and 3x3 matrices with characteristic polynomial (-1)^n*t^n. However, I'm not sure how to actually prove this fact (especially for the nxn case), or how to show that T is nilpotent using this fact.

Any help would be much appreciated : )
 
Last edited:
Physics news on Phys.org
You could try the theorem of Cayley-Hamilton. This will answer your question...
 
Thank you, that makes it very easy...if only I could remember when to use these theorems on my own!
 
One question: Doesn't the Cayley-Hamilton Theorem only apply to linear operators on finite-dimensional vector spaces? What if the vector space is infinite-dimensional?
 
Well, firstly, how would you define the characteristic polynomial in an infinite-dimensional space??
 
That's a good point!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top