latentcorpse
- 1,411
- 0
i need to check z^a is holomorphic on \mathbb{C} \backslash \{0\}, a \in \mathbb{C} but am having difficulty arranging it into a form that i can use the Cauchy Riemann equations on. so far is have:
z^a=e^{a \ln{z}}=e^{a \ln{|z|}}e^{i arg(z)}
which when i break up the second exponential gives
z^a=e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \cos{\arctan{(\frac{y}{x})}}+i e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \sin{\arctan{(\frac{y}{x})}}
so if i let z=u(x,y)+i v(x,y) we get
u(x,y)=e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \cos{\arctan{(\frac{y}{x})}}
v(x,y)=e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \sin{\arctan{(\frac{y}{x})}}
z^a=e^{a \ln{z}}=e^{a \ln{|z|}}e^{i arg(z)}
which when i break up the second exponential gives
z^a=e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \cos{\arctan{(\frac{y}{x})}}+i e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \sin{\arctan{(\frac{y}{x})}}
so if i let z=u(x,y)+i v(x,y) we get
u(x,y)=e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \cos{\arctan{(\frac{y}{x})}}
v(x,y)=e^{a \ln{(x^2+y^2)^{\frac{1}{2}}}} \sin{\arctan{(\frac{y}{x})}}