Check the work to see if it is right.

  • Thread starter Thread starter yaho8888
  • Start date Start date
  • Tags Tags
    Work
yaho8888
Messages
62
Reaction score
0
Homework Statement [/b]
x = 4sin(5t)
y= 2cos(5t)

find the equation in term of X and Y.

Solution:

(X^2)/16+(y^2)/4=1


The only answer you have to say is right or wrong.
Thanks!
 
Physics news on Phys.org
Right. But for all I know, you may believe that's correct for the wrong reason. Hope not.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top