Checking if a function is analytic or entire

  • Thread starter Thread starter fleazo
  • Start date Start date
  • Tags Tags
    Function
fleazo
Messages
80
Reaction score
0
To begin, I think I might be using holomorphic and analytic (incorrectly) interchangeably. When I think of analytic I think of something being able to be represented locally by a power series. holomorphic however makes me think of a function being complex differentiable locally. I am a bit confused because they seem to be used interchangeably in complex analysis and that one implies the other.


Now my question, what is the best way to check that a function is analytic?/ I know this is an incredibly basic question and I look for answers but I just don't seem to find, for example, just a theorem I can apply. I know I have the C-R equations but if they are satisfied that only gaurantees the function is holomorphic at that point. To be analytic at a point, it should be complex differentiable in an entire open set containing the point.


Are there any useful little tricks to check for this? Or really good theorems to apply? And similarly with a function being entire (holomorphic everywhere?) is it just kind of an issue of analyzing the function and figuring it out (and plus I know say, polys are entire, cosz, sinz, and e^z are entire so combinations of them will be) or are there any hard and fast theorems I can apply that simplify the task?
 
Physics news on Phys.org
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.

Similar threads

Replies
17
Views
2K
Replies
4
Views
3K
Replies
8
Views
2K
Replies
11
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top