MHB Checking if $f_1, f_2, f_3 Belong to $S_{X,3}$

  • Thread starter Thread starter mathmari
  • Start date Start date
AI Thread Summary
The discussion revolves around determining whether specific functions belong to the vector space of cubic spline functions, denoted as $S_{X,3}$. The functions under consideration include $f_1(x) = |x|^3$, which is continuous and has a derivative that needs verification for continuity; $f_2(x) = (x - \frac{1}{3})_+^3$, where the meaning of the $+$ sign is questioned; and $f_3(x) = -x + x^3 + 3x^5$, which is excluded from $S_{X,3}$ due to its degree exceeding 3. Additionally, $f_4(x) = \sum_{n=0}^3 a_n x^n$ is confirmed to be in $S_{X,3}$ as it meets the criteria of being of degree 3 and $C^2$. The conversation also touches on the need to analyze further functions and their intervals for continuity and differentiability.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $S_{X,3}$ be the vector space of the cubic splines functions on $[-1, 1]$ with the points \begin{equation*}X=\left \{x_0=-1, \ x_1=-\frac{1}{2},\ x_2=0,\ x_3=\frac{1}{2}, \ x_4=1\right \}\end{equation*}

I want to check if the following function are in $S_{X,3}$.
  1. $f_1(x):=|x|^3$
  2. $f_2(x)=\left (x-\frac{1}{3}\right )_+^3$
  3. $f_3(x)=-x+x^3+3x^5$
  4. $f_4(x)=\sum_{n=0}^3a_nx^n$, $a_n\in \mathbb{R}, n=0, \ldots , 3$
We have to check at each case if the function are of degree at most $3$ and are $C^2$, or not? (Wondering)

I have done the following:

  1. $f_1(x):=|x|^3=|x|^3=\begin{cases}
    x^3 \ \ \ ,& x\geq 0\\
    -x^3 \ ,& x<0
    \end{cases}$

    This function is continuous at every point, i.e. at $[-1, 0), (0, 1]$ and at $x=0$.

    Then we have to check if the derivative id continuous. How can we calculate the derivative? (Wondering)
  2. $f_2(x)=\left (x-\frac{1}{3}\right )_+^3$

    What exactly does the $+$ mean? (Wondering)
  3. $f_3(x)=-x+x^3+3x^5$

    This function is not in $S_{X,3}$, since it is of order $5$ instead of at most $3$.
  4. $f_4(x)=\sum_{n=0}^3a_nx^n$, $a_n\in \mathbb{R}, n=0, \ldots , 3$

    This function is $C^2$ and of degree $3$.

    From that it follows that $f_4\in S_{X,3}$, right? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
[*] $f_1(x):=|x|^3=|x|^3=\begin{cases}
x^3 \ \ \ ,& x\geq 0\\
-x^3 \ ,& x<0
\end{cases}$

This function is continuous at every point, i.e. at $[-1, 0), (0, 1]$ and at $x=0$.

Then we have to check if the derivative id continuous. How can we calculate the derivative?

Hey mathmari!

Isn't the derivative:
$$f_1'(x)=\begin{cases}
3x^2 \ \ \ ,& x\geq 0\\
-3x^2 \ ,& x<0
\end{cases}$$
(Wondering)

mathmari said:
[*] $f_2(x)=\left (x-\frac{1}{3}\right )_+^3$

What exactly does the $+$ mean?

I don't know. I haven't seen such a subscript + before.
Can it be a typo? (Wondering)
mathmari said:
[*] $f_3(x)=-x+x^3+3x^5$

This function is not in $S_{X,3}$, since it is of order $5$ instead of at most $3$.

[*] $f_4(x)=\sum_{n=0}^3a_nx^n$, $a_n\in \mathbb{R}, n=0, \ldots , 3$

This function is $C^2$ and of degree $3$.

From that it follows that $f_4\in S_{X,3}$, right?

Yep. (Nod)
 
Could the subscript $+$ be the positive part of the expression between parentheses?
 
I see! Thank you! (Happy) What about the following function?

$f(x)=\left ||x|^3-\left |x+\frac{1}{3}\right |^2\right |=\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3-\left |x+\frac{1}{3}\right |^2>0\\ |x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3-\left |x+\frac{1}{3}\right |^2<0\end{cases}=\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3>\left (x+\frac{1}{3}\right )^2\\ |x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3<\left (x+\frac{1}{3}\right )^2\end{cases}$ How can we check what subintervals of $[-1,1]$ we have here? (Wondering)
 
Looks like we need to divide it further into sub cases for [-1,-1/3), [-1/3, 0), [0, 1], don't we? (Wondering)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top