MHB Chloe's question at Yahoo Answers involving the angle sum identity for cosine

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Help with precalculus! Sum or difference formula?

Find the exact value of the given expression using a sum or difference formula.
cos11π/12

A) (sqrt3 - 1)/(2sqrt2)
B) (-sqrt3 + 1)/(2sqrt2)
C) (-sqrt3 - 1)/(2sqrt2)
D) (sqrt3 +1)/(2sqrt2)

Here is a link to the question:

Help with precalculus! Sum or difference formula? - Yahoo! Answers

I have posted a link there to this question so the OP can find my response.
 
Mathematics news on Phys.org
Re: Chloe's question at Yahoo! Questions involving the angle sum identity for cosine

Hello Chloe,

I find it simpler to convert the argument of the cosine function into degrees, to see how best to break it up as a sum or difference:

$$\frac{11\pi}{12}\cdot\frac{180^{\circ}}{\pi}=165^{\circ}=135^{\circ}+30^{\circ}$$

Now, using the angle-sum identity for cosine, we find:

$$\cos\left(135^{\circ}+30^{\circ} \right)=\cos\left(135^{\circ} \right)\cos\left(30^{\circ} \right)-\sin\left(135^{\circ} \right)\sin\left(30^{\circ} \right)=-\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\cdot\frac{1}{2}=-\frac{\sqrt{3}+1}{2\sqrt{2}}$$

This is equivalent to choice C.

To Chloe and any other guests viewing this topic, I invite and encourage you to post other trigonometry problems here in our http://www.mathhelpboards.com/f12/ forum.

Best Regards,

Mark.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top