Confused Physicist
- 14
- 0
Hi! I'm asked to find all the non-zero Christoffel symbols given the following line element:
ds^2=2x^2dx^2+y^4dy^2+2xy^2dxdy
The result I have obtained is that the only non-zero component of the Christoffel symbols is:
\Gamma^x_{xx}=\frac{1}{x}
Is this correct?
MY PROCEDURE HAS BEEN:
the Lagrangian squared is given by:
\mathcal{L}^2=2x^2\dot{x}^2+y^4\dot{y}^2+2xy^2\dot{x}\dot{y}
where \dot{\quad}\equiv d/d\tau, with \tau being the proper time.
The Euler-Lagrange equations for this Lagrangian are:
<br /> \begin{split}<br /> \frac{d}{d\tau}\Bigg(\frac{\partial\mathcal{L}^2}{\partial{\dot{x}}}\Bigg)-\frac{\partial\mathcal{L}^2}{\partial x}=0\quad\longrightarrow\quad&\frac{d}{d\tau}\Big(4x^2\dot{x}+2xy^2\dot{y}\Big)-4x\dot{x}^2-2y^2\dot{x}\dot{y}=0\\<br /> &8x\dot{x}^2+4x^2\ddot{x}+2y^2\dot{x}\dot{y}+4xy\dot{y}^2+2xy^2\ddot{y}-4x\dot{x}^2-2y^2\dot{x}\dot{y}=0\\<br /> \text{(1)}\quad&2x^2\ddot{x}+xy^2\ddot{y}+2x\dot{x}^2+2xy\dot{y}^2=0\\<br /> \frac{d}{d\tau}\Bigg(\frac{\partial\mathcal{L}^2}{\partial{\dot{y}}}\Bigg)-\frac{\partial\mathcal{L}^2}{\partial y}=0\quad\longrightarrow\quad&\frac{d}{d\tau}\Big(2y^4\dot{y}+2xy^2\dot{x}\Big)-4y^3\dot{y}^2-4xy\dot{x}\dot{y}=0\\<br /> &8y^3\dot{y}^2+2y^4\ddot{y}+2y^2\dot{x}^2+4xy\dot{x}\dot{y}+2xy^2\ddot{x}-4y^3\dot{y}^2-4xy\dot{x}\dot{y}=0\\<br /> \text{(2)}\quad&xy^2\ddot{x}+y^4\ddot{y}+y^2\dot{x}^2+2y^3\dot{y}^2=0<br /> \end{split}<br />
Multiplying equation (1) by y^2/x we obtain: 2xy^2\ddot{x}+y^4\ddot{y}+2y^2\dot{x}^2+2y^3\dot{y}^2=0. Subtracting equation (2) from this result we obtain:
xy^2\ddot{x}+y^2\dot{x}^2=0\quad\longrightarrow\quad \ddot{x}+\frac{1}{x}\dot{x}^2=0
Multiplying equation (2) by 2x/y^2 we obtain: 2x^2\ddot{x}+2xy^2\ddot{y}+2x\dot{x}^2+2xy\dot{y}^2=0.Subtracting equation (1) from this result we obtain:
xy^2\ddot{y}=0\quad\longrightarrow\quad \ddot{y}=0
Knowing that the general expression for the geodesic equation is:
\ddot{x}^\alpha+\Gamma^\alpha_{\beta\gamma}\dot{x}^\beta \dot{x}^\gamma=0
\boxed{\text{the only non-zero Christoffel symbol is therefore: } \Gamma^x_{xx}=\frac{1}{x}}
ds^2=2x^2dx^2+y^4dy^2+2xy^2dxdy
The result I have obtained is that the only non-zero component of the Christoffel symbols is:
\Gamma^x_{xx}=\frac{1}{x}
Is this correct?
MY PROCEDURE HAS BEEN:
the Lagrangian squared is given by:
\mathcal{L}^2=2x^2\dot{x}^2+y^4\dot{y}^2+2xy^2\dot{x}\dot{y}
where \dot{\quad}\equiv d/d\tau, with \tau being the proper time.
The Euler-Lagrange equations for this Lagrangian are:
<br /> \begin{split}<br /> \frac{d}{d\tau}\Bigg(\frac{\partial\mathcal{L}^2}{\partial{\dot{x}}}\Bigg)-\frac{\partial\mathcal{L}^2}{\partial x}=0\quad\longrightarrow\quad&\frac{d}{d\tau}\Big(4x^2\dot{x}+2xy^2\dot{y}\Big)-4x\dot{x}^2-2y^2\dot{x}\dot{y}=0\\<br /> &8x\dot{x}^2+4x^2\ddot{x}+2y^2\dot{x}\dot{y}+4xy\dot{y}^2+2xy^2\ddot{y}-4x\dot{x}^2-2y^2\dot{x}\dot{y}=0\\<br /> \text{(1)}\quad&2x^2\ddot{x}+xy^2\ddot{y}+2x\dot{x}^2+2xy\dot{y}^2=0\\<br /> \frac{d}{d\tau}\Bigg(\frac{\partial\mathcal{L}^2}{\partial{\dot{y}}}\Bigg)-\frac{\partial\mathcal{L}^2}{\partial y}=0\quad\longrightarrow\quad&\frac{d}{d\tau}\Big(2y^4\dot{y}+2xy^2\dot{x}\Big)-4y^3\dot{y}^2-4xy\dot{x}\dot{y}=0\\<br /> &8y^3\dot{y}^2+2y^4\ddot{y}+2y^2\dot{x}^2+4xy\dot{x}\dot{y}+2xy^2\ddot{x}-4y^3\dot{y}^2-4xy\dot{x}\dot{y}=0\\<br /> \text{(2)}\quad&xy^2\ddot{x}+y^4\ddot{y}+y^2\dot{x}^2+2y^3\dot{y}^2=0<br /> \end{split}<br />
Multiplying equation (1) by y^2/x we obtain: 2xy^2\ddot{x}+y^4\ddot{y}+2y^2\dot{x}^2+2y^3\dot{y}^2=0. Subtracting equation (2) from this result we obtain:
xy^2\ddot{x}+y^2\dot{x}^2=0\quad\longrightarrow\quad \ddot{x}+\frac{1}{x}\dot{x}^2=0
Multiplying equation (2) by 2x/y^2 we obtain: 2x^2\ddot{x}+2xy^2\ddot{y}+2x\dot{x}^2+2xy\dot{y}^2=0.Subtracting equation (1) from this result we obtain:
xy^2\ddot{y}=0\quad\longrightarrow\quad \ddot{y}=0
Knowing that the general expression for the geodesic equation is:
\ddot{x}^\alpha+\Gamma^\alpha_{\beta\gamma}\dot{x}^\beta \dot{x}^\gamma=0
\boxed{\text{the only non-zero Christoffel symbol is therefore: } \Gamma^x_{xx}=\frac{1}{x}}
Last edited: