MHB Circle problem finding coordinates of points

AI Thread Summary
The discussion revolves around solving the intersection points of a circle defined by the equation (x + 3)² + (y - 4)² = 17 and a line given by 3y = -5x + 14. Participants clarify the substitution process for y and how to handle the resulting quadratic equation. The correct approach involves simplifying the equation and multiplying through to eliminate denominators, leading to a quadratic equation that can be factored. Ultimately, the intersection points are found to be (1, 3) and (-2, 8). The conversation highlights the importance of careful algebraic manipulation in solving such problems.
Casio1
Messages
86
Reaction score
0
Continued from;
Originally Posted by Jameson http://www.mathhelpboards.com/f2/understanding-how-deal-fractions-using-brackets-2596/#post11674 What is the full problem you are trying to solve? I can't make sense of your post until I know that. I have a circle problem and am trying to find coordinates of any points at which the circle (x + 3)^2 + (y - 4)^2 = 17 intersects the line 3y = - 5x + 14.

I started off and got to;

(x + 3)^2 + ( y - 4)^2 = 17

(x + 3)^2 + ( - 5x + 14 - 4) = 17

(x + 3)^2 + ( - 5x + 2/3) = 17

(x + 3)^2 + 1/9(25x^2 - 20x + 4) = 17

I got this far above but don't know what to do with the denominator 9?

If I expand (x + 3)^2 = x^2 + 6x + 9

What I can't do is add this to 1/9(25x^2 - 20x + 4) = 17

This is were I am stuck?
 
Last edited:
Mathematics news on Phys.org
Why are you changing -5x + 14 - 4 to -5x + 2/3?

I would write:

$\displaystyle (x+3)^2+(y-4)^2=17$

Substitute for y:

$\displaystyle (x+3)^2+(-5x+14-4)^2=17$

Combine like terms within second term of equation, and factor out $\displaystyle -5$:

$\displaystyle (x+3)^2+(-5)^2(x-2)^2=17$

$\displaystyle (x+3)^2+25(x-2)^2=17$

Now, expand and write in standard form the resulting quadratic in x.
 
MarkFL said:
Why are you changing -5x + 14 - 4 to -5x + 2/3?

I would write:

$\displaystyle (x+3)^2+(y-4)^2=17$

Substitute for y:

$\displaystyle (x+3)^2+(-5x+14-4)^2=17$

Combine like terms within second term of equation, and factor out $\displaystyle -5$:

$\displaystyle (x+3)^2+(-5)^2(x-2)^2=17$

$\displaystyle (x+3)^2+25(x-2)^2=17$

Now, expand and write in standard form the resulting quadratic in x.

Just a query that I don't understand how you got from;

$\displaystyle (x + 3)^2 + ( - 5x + 14 - 4)^2 = 17$

To

$\displaystyle (x + 3)^2 + 25( x - 2)^2 = 17$

Thanks

Mark you asked;
Why are you changing -5x + 14 - 4 to -5x + 2/3?

Because the circle intersects the line 3y = - 5x + 14

therefore - 5x + 14 is divided by 3 and the minus 4 became 2\3
 
Last edited:
Oops! Sorry, I misread the problem. Let me try this again...

I would write:

$\displaystyle (x+3)^2+(y-4)^2=17$

Substitute for y:

$\displaystyle (x+3)^2+\left(\frac{-5x+14}{3}-4 \right)^2=17$

$\displaystyle (x+3)^2+\left(\frac{-5x+14-12}{3} \right)^2=17$

$\displaystyle (x+3)^2+\left(\frac{-5x+2}{3} \right)^2=17$

Using $\displaystyle (a-b)^2=(b-a)^2$ we may write:

$\displaystyle (x+3)^2+\left(\frac{5x-2}{3} \right)^2=17$

Factor out the square of 1/3:

$\displaystyle (x+3)^2+\frac{1}{9}(x-2)^2=17$

Multiply through by 9:

$\displaystyle 9(x+3)^2+(x-2)^2=153$

Now, expand, distribute and write in standard form the resulting quadratic in x.
 
Hello, everyone!

$\text{Find the intersections of the circle }\,(x + 3)^2 + (y - 4)^2 \:=\: 17\;\;\color{blue}{[1]}$
$\text{ and the line }\,3y \:=\: -5x + 14\;\;\color{blue}{[2]}$
From [2]: .$y \:=\:\text{-}\frac{5}{3}x + \frac{14}{3}$

Substitute into [1]: .$(x+3)^2 + \left(\text{-}\frac{5}{3}x+\frac{14}{3} - 4\right)^2 \;=\;17$

. . . . . . . . . . . . . . . . . $(x+3)^2 + \left(\text{-}\frac{5}{3}x + \frac{2}{3}\right)^2 \;=\;17$

. . . . . . . . . . . . $x^2 + 6x + 9 + \frac{25}{9}x^2 - \frac{20}{9}x + \frac{4}{9} \;=\;17$

Multiply by 9: .$9x^2 + 54x + 81 + 25x^2 - 20x + 4 \;=\;153$

. . . . . . . . . . . . . . . . . . . . . . .$34x^2 + 34x - 68 \;=\;0$

Divide by 34: .$x^2 + x - 2 \;=\;0$

. . . . . . . .$(x-1)(x+2) \;=\;0$

. . . . . . . . . . . $ x \:=\:1,\:\text{-}2$

. . . . . . . . . . . $ y \:=\:3,\:8$Answers: .$(1,\,3),\;(\text{-}2,\,8)$
 
soroban said:
Hello, everyone!


From [2]: .$y \:=\:\text{-}\frac{5}{3}x + \frac{14}{3}$

Substitute into [1]: .$(x+3)^2 + \left(\text{-}\frac{5}{3}x+\frac{14}{3} - 4\right)^2 \;=\;17$

. . . . . . . . . . . . . . . . . $(x+3)^2 + \left(\text{-}\frac{5}{3}x + \frac{2}{3}\right)^2 \;=\;17$

. . . . . . . . . . . . $x^2 + 6x + 9 + \frac{25}{9}x^2 - \frac{20}{9}x + \frac{4}{9} \;=\;17$

Multiply by 9: .$9x^2 + 54x + 81 + 25x^2 - 20x + 4 \;=\;153$

. . . . . . . . . . . . . . . . . . . . . . .$34x^2 + 34x - 68 \;=\;0$

Divide by 34: .$x^2 + x - 2 \;=\;0$

. . . . . . . .$(x-1)(x+2) \;=\;0$

. . . . . . . . . . . $ x \:=\:1,\:\text{-}2$

. . . . . . . . . . . $ y \:=\:3,\:8$Answers: .$(1,\,3),\;(\text{-}2,\,8)$

Thanks, I was getting there but was struggling to understand initially how to get rid of the denominator 9, which I multiplied through like you and got the results, but I must admit at the point of 34x^2 + 34x - 68 = 0, I had difficulties because I was getting solutions saying I had no roots and the question said the line did intersect the circle.

I don't think I would have thought about dividing the 34's out and would not have solved this without your help.

Very much appreciated to all that contributed.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
2
Views
1K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
4
Views
1K
Back
Top