Unit
- 181
- 0
I understand how this works:
\cos x = \frac{1}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \ldots
But what about this?
\frac{1}{\cos x} = \frac{1}{0!} + \frac{x^2}{2!} + \frac{5x^4}{4!} + \frac{61x^6}{6!} + \frac{1385x^8}{8!} + \frac{50521x^{10}}{10!} + \ldots
Is there a way to take the reciprocal of an infinite series or is it necessary to take subsequent derivatives of secant and write the Taylor expansion that way?
Thanks,
Unit
\cos x = \frac{1}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \ldots
But what about this?
\frac{1}{\cos x} = \frac{1}{0!} + \frac{x^2}{2!} + \frac{5x^4}{4!} + \frac{61x^6}{6!} + \frac{1385x^8}{8!} + \frac{50521x^{10}}{10!} + \ldots
Is there a way to take the reciprocal of an infinite series or is it necessary to take subsequent derivatives of secant and write the Taylor expansion that way?
Thanks,
Unit