Engineering Circuit analysis -- Find active and reactive power in the branch....

Click For Summary
The discussion focuses on solving a circuit analysis problem involving sinusoidal currents and complex impedances. Participants detail their approach using loop current analysis to derive equations for the circuit, ultimately reducing them to a simpler system to find the currents and voltages. There is a correction regarding the calculation of total current, where it should include I_C1, I_C2, and I_C4 instead of I_C3. Additionally, participants discuss the potential use of simulation software like OrCAD or LTSpice for verifying results and express the need for simpler methods to solve the complex equations. The conversation highlights the importance of accurate impedance calculations and the possibility of simplifying circuit analysis through strategic approaches.
gruba
Messages
203
Reaction score
1

Homework Statement


Given the circuit of sinusoidal current (attachment 1) with given data:
\underline{E}=100V,\underline{E_1}=40V,\underline{Z}=(10+j10)\Omega,\omega=10^5rad/s,L=1mH,<br /> C=0.1uF. Find \underline{I_L},\underline{U_{16}}, active and reactive power in the branch 2-5.

im1.PNG

im2.PNG


2. The attempt at a solution
Using the loop current analysis we can find four loops (attachment 2) that correspond to linear system of four complex equations:

C_1: (2\underline{Z}+jX_L)\underline{I_{C1}}-\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C3}}+\underline{Z}\underline{I_{C4}}=\underline{E_1}-\underline{E}
C_2: 2\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C3}}+\underline{Z}\underline{I_{C4}}=\underline{E_1}+\underline{E}
C_3: 2\underline{Z}\underline{I_{C3}}-\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C4}}=\underline{E}
C_4: (2\underline{Z}-jX_C)\underline{I_{C4}}+2\underline{Z}\underline{I_{C1}}+\underline{Z}\underline{I_{C2}}-\underline{Z}\underline{I_{C3}}=\underline{E_1}-\underline{E}

This gives:
(20+j120)\underline{I_{C1}}-(10+j10)\underline{I_{C2}}-(10+j10)\underline{I_{C3}}+(20+j20)\underline{I_{C4}}=-60

(-10-j10)\underline{I_{C1}}+(20+j20)\underline{I_{C2}}+(10+j10)\underline{I_{C3}}+(10+j10)\underline{I_{C4}}=140

(-10-j10)\underline{I_{C1}}+(10+j10)\underline{I_{C2}}+(20+j20)\underline{I_{C3}}+(-10-j10)\underline{I_{C4}}=100

(20+j20)\underline{I_{C1}}+(10+j10)\underline{I_{C2}}-(10+j10)\underline{I_{C3}}+(20-j80)\underline{I_{C4}}=-60

After reducing to 3x3 system:

(30+j230)\underline{I_{C1}}+(-10-j10)\underline{I_{C3}}+(50+j50)\underline{I_{C4}}=20

(10+j110)\underline{I_{C1}}+(10+j10)\underline{I_{C3}}+(10+j10)\underline{I_{C4}}=20

(40+j140)\underline{I_{C1}}+(-20-j20)\underline{I_{C3}}+(40-j60)\underline{I_{C4}}=-120After reducing to 2x2 system:

(40+j340)\underline{I_{C1}}+(60+j60)\underline{I_{C4}}=60

(-20-j320)\underline{I_{C1}}+(-60-j160)\underline{I_{C4}}=-160

<br /> \begin{bmatrix}<br /> 40+j340 &amp; 60+j60 \\<br /> -20-j320 &amp; -60-j160 \\<br /> \end{bmatrix} \begin{bmatrix}<br /> \underline{I_{C1}} \\<br /> \underline{I_{C4}} \\<br /> \end{bmatrix}=\begin{bmatrix}<br /> 60 \\<br /> -160 \\<br /> \end{bmatrix}\Rightarrow<br />

\begin{bmatrix}<br /> 40+j340 &amp; 60+j60 &amp; 60+j0 \\<br /> -20-j320 &amp; -60-j160 &amp; -160+j0 \\<br /> \end{bmatrix}=

\begin{bmatrix}<br /> 40 &amp; -340 &amp; 60 &amp; -60 &amp; 60 &amp; 0 \\<br /> 340 &amp; 40 &amp; 60 &amp; 60 &amp; 0 &amp; 60 \\<br /> -20 &amp; 320 &amp; -60 &amp; 160 &amp; -160 &amp; 0 \\<br /> -320 &amp; -20 &amp; -160 &amp; -60 &amp; 0 &amp; -160 \\<br /> \end{bmatrix}<br />

Reduced row echelon form of this matrix is:
\begin{bmatrix}<br /> 1 &amp; 0 &amp; 0 &amp; 0 &amp; 1275/7481 &amp; -240/7481 \\<br /> 0 &amp; 1 &amp; 0 &amp; 0 &amp; 240/7481 &amp; 1275/7481 \\<br /> 0 &amp; 0 &amp; 1 &amp; 0 &amp; 303/7481 &amp; 7688/7481\\<br /> 0 &amp; 0 &amp; 0 &amp; 1 &amp; -7688/7481 &amp; 303/7481 \\<br /> \end{bmatrix}

Now:

\underline{I_{C1}}=\frac{1275}{7481}+j\frac{240}{7481},\underline{I_{C4}}=\frac{303}{7481}-j\frac{7688}{7481}\Rightarrow \underline{I_{C3}}=\frac{8209}{7481}-j\frac{15089}{7481},$$$$\underline{I_{C2}}=\frac{22565}{7481}-j\frac{14675}{7481}

\underline{I_L}=\underline{I_{C1}},\underline{U_{16}}=-jX_C \underline{I_{16}},\underline{I_{16}}=\underline{I_{C2}}\Rightarrow \underline{U_{16}}=-\frac{1467500}{7481}-j\frac{2256500}{7481}

Active and reactive power in the branch 2-5 can be found by complex apparent power, \underline{S_{25}}=\underline{U_{25}}\underline{{I_{52}}^{*}}

\underline{I_{52}}=\underline{I_{C1}}+\underline{I_{C2}}+\underline{I_{C3}}=\frac{32049}{7481}-j\frac{29524}{7481}
\underline{U_{25}}=\underline{E_1}-\underline{I_{52}}\underline{Z}=-\frac{316490}{7481}-j\frac{25250}{7481}\Rightarrow \underline{S_{25}}=-\frac{9397707010}{55965361}-j\frac{10153288010}{55965361}

\Rightarrow P=-\frac{9397707010}{55965361} W,Q=-\frac{10153288010}{55965361} var

Question: Could someone check if the results are correct?

UPDATE:

Question: What type of simulation in OrCAD Capture CIS Lite 16.6 can be used for checking these results?
 
Last edited:
  • Like
Likes Delta2
Physics news on Phys.org
Near the end of all your analysis you have: I52 = IC1+IC2+IC3 but I think it should be I52 = IC1+IC2+IC4

You sure used a cumbersome method of solving the system. Modern symbolic algebra software can solve the system in one go:

CmplxPwr1.png
 
The Electrician said:
Near the end of all your analysis you have: I52 = IC1+IC2+IC3 but I think it should be I52 = IC1+IC2+IC4
You sure used a cumbersome method of solving the system.

You are correct about the current \underline{I_{52}}. It should be \underline{I_{52}}=\underline{I_{C1}}+\underline{I_{C2}}+\underline{I_{C4}}.

Do you know the easier method for solving the system of linear complex equations without any software?

Also, do you know if it is possible to check the results in OrCAD?
 
Why do you want to solve the system without any software? How about using a calculator that can do complex arithmetic? That would at least relieve some of the burden of the massive amount of number crunching.

I don't use OrCad, so I can't help you there.
 
@gruba: How did you arrive at 120 Ω for XL and 20 Ω for XC?

I'm not familiar with OrCad, but it would be straightforward to set up a simulation using a Spice package such as LTSpice (which is free).
 
gneill said:
@gruba: How did you arrive at 120 Ω for XL and 20 Ω for XC?
The reason I ask is that with a source angular frequency of 105 rad/sec and part values for the inductor and capacitor being 1 mH and 0.1 μF, impedance values of 120 and 20 Ohms are not possible.

You might also find that their actual impedance values have a particularly fortuitous relationship that can greatly simplify your circuit analysis approach... :wink:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
6K