What is the angle and angular speed of a flight from Kampala to Singapore?

In summary, the Earth's radius is about 4000 miles and the distance between Kampala and Singapore is 5000 miles. To find the angle between the two cities, the cosine rule can be used with a=4000 miles, b=4000 miles, and c=5000 miles, resulting in an angle of 1.35 radians or 71.6 degrees. To calculate the plane's angular speed relative to the Earth, divide the angle by the flight time in seconds.
  • #1
aligass2004
236
0

Homework Statement



The Earth's radius is about 4000 miles. Kampala, the capital of Uganda, and Singapore are both nearly on the equator. The distance between them is 5000 miles. a.) Through what angle do you turn, relative to the earth, if you fly from Kampala to Singapore? Give your answer in both radians and degrees. b.) If the flight from Kampala to Singapore takes 12 hours, what is the plane's angular speed relative to the earth? (in rad/s)

Homework Equations





The Attempt at a Solution



I tried drawing a right triangle to find the angle. I assumed that it would be the cos of 5000/4000, but that didn't work.
 
Physics news on Phys.org
  • #2
You have 3 points... the center of the earth... and the two cities...

So these 3 points form a triangle... what are the lengths of the 3 sides?

which is the angle you need... draw a picture...
 
  • #3
The center of the Earth is the point from which both lines exit. There would be a straight horizontal line coming from the earth, which would be 5000. Then there would be another line extending somewhat horizontal and somewhat vertical, which would be 4000.
 
  • #4
aligass2004 said:
The center of the Earth is the point from which both lines exit. There would be a straight horizontal line coming from the earth, which would be 5000. Then there would be another line extending somewhat horizontal and somewhat vertical, which would be 4000.

you should have 3 lines... what is the distance from the center to kampala? what is the distance from the center to singapore? what is the distance from kampala to singapore?
 
  • #5
The distance from Kampala to Singapore is 5000 miles. The distance from the center to Kampala is 4000 miles, and the distance from the center to Singapore is the same.
 
  • #6
aligass2004 said:
The distance from Kampala to Singapore is 5000 miles. The distance from the center to Kampala is 4000 miles, and the distance from the center to Singapore is the same.

cool. now you need the angle between the 2 4000 mile sides... you can use the cosine rule to get this angle.
 
  • #7
So it would be the cos(4000/4000)?
 
  • #9
I looked that up before and found cos(C) = a^2 + b^2 - c^2 / 2ab. I got .219 rad, which was wrong.
 
  • #10
aligass2004 said:
I looked that up before and found cos(C) = a^2 + b^2 - c^2 / 2ab. I got .219 rad, which was wrong.

I'm not getting that... just to be sure this is the formula you need to be using:

[tex]cos(C) = \frac{a^2+b^2 -c^2}{2ab}[/tex]

what did you use for a and b? what did you use for c?
 
  • #11
a and b would be 4000 and c would be 5000.
 
  • #12
aligass2004 said:
I looked that up before and found cos(C) = a^2 + b^2 - c^2 / 2ab. I got .219 rad, which was wrong.

I see what happened. cos(C) = 0.219. you forgot to take the arccos...
 
  • #13
So would it be the inverse of cos which is 1.35?
 
  • #14
aligass2004 said:
So would it be the inverse of cos which is 1.35?

yes. 1.35 radians.
 
  • #15
I tried that and it said it's wrong.
 
  • #16
aligass2004 said:
I tried that and it said it's wrong.

Hmm... I don't understand it... did the question want radians or degrees?
 
  • #17
It wants both.
 
  • #18
Ah... I was considering the distance between the two places as a straight line... maybe the 5000 miles is supposed to be the curved distance... in which case 5000 = R*theta, so theta = 5000/4000 = 1.25 radians...
 
  • #19
Force acting on a Skier

can you guys assist me solve this.
Determine the normal force acting on the skier at point A, where his velocity is 20 m/s, weigth = 60kg and the radius of curvature, p is 30m.

The available options as answers are:

A. 1368N
B. 1857N
C. 1386N
D. 1636N


I have worked with the formula

F = MV2/R

i.e F = (60 * 20*20)/30 = 800N

as u can see this doesn't correspond with any of the options above
 
  • #20
walt_077 said:
can you guys assist me solve this.
Determine the normal force acting on the skier at point A, where his velocity is 20 m/s, weigth = 60kg and the radius of curvature, p is 30m.

The available options as answers are:

A. 1368N
B. 1857N
C. 1386N
D. 1636N


I have worked with the formula

F = MV2/R

i.e F = (60 * 20*20)/30 = 800N

as u can see this doesn't correspond with any of the options above
A separate thread would be appropriate for this problem.

I presume there is a figure associated with this problem. The net force will depend on the orientation of the trajectory. In addition to a centripetal force, there is also the weight of the skier, W = mg. Weight and centripetal force are vectors and would be additive to obtain the net force.
 
  • #21
Ok, the 1.25 radians was right. Then to find the degrees I used angle in radians x 180/pi to get 71.62 degrees. Now I'm confused about part b.
 
  • #22
aligass2004 said:
Ok, the 1.25 radians was right. Then to find the degrees I used angle in radians x 180/pi to get 71.62 degrees. Now I'm confused about part b.

Take the radians... 1.25. Divide by time in seconds...
 
  • #23
I got 2.894E-5, and it was right. Thank you!
 
  • #24
thanks for the help ... i had the same issues with the same exact prob.
 
  • #25
its 71.6 degrees :)
 

1. What causes the circular motion of the Earth?

The circular motion of the Earth is caused by two main factors: the gravitational pull of the Sun and the Earth's own rotation on its axis. The Sun's gravitational pull keeps the Earth in its orbit, while the Earth's rotation creates the daily cycle of day and night.

2. How long does it take for the Earth to complete one revolution around the Sun?

The Earth takes approximately 365.24 days to complete one revolution around the Sun. This is why we have leap years every 4 years to account for the extra 0.24 days, making the year 366 days long.

3. What causes the change in seasons on Earth?

The change in seasons on Earth is primarily caused by the tilt of the Earth's axis. This tilt causes different parts of the Earth to receive more or less direct sunlight throughout the year, resulting in the changes in temperature and weather patterns that we experience as seasons.

4. Is the Earth's orbit perfectly circular?

No, the Earth's orbit is not perfectly circular. It is slightly elliptical, meaning that at certain points in its orbit, the Earth is slightly closer or farther away from the Sun. This does not have a significant impact on the Earth's climate or seasons.

5. Can the Earth's orbit change over time?

Yes, the Earth's orbit can change over time. This is due to various factors such as gravitational pull from other planets and asteroids, and changes in the Earth's own rotation and tilt. However, these changes occur over extremely long periods of time and do not significantly affect our daily lives.

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
2
Replies
39
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
4K
Replies
11
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Introductory Physics Homework Help
Replies
20
Views
3K
Back
Top