krackers
- 72
- 0
The rule states that:
{ lim }_{ x\rightarrow c }\quad \frac { f(x) }{ g(x) } \quad =\quad { lim }_{ x\rightarrow c }\quad \frac { f'(x) }{ g'(x) }
Right?
So if
{ lim }_{ x\rightarrow 2 }\frac { { x }^{ 2 }+1 }{ x-1 } \quad =\quad 5
Then shouldn't
{ lim }_{ x\rightarrow 2 }\frac { { (x }^{ 2 }+1)' }{ (x-1)' } \quad =\quad 5
Also equal to 5? However, it equals to 4. Can someone help me understand why?
{ lim }_{ x\rightarrow c }\quad \frac { f(x) }{ g(x) } \quad =\quad { lim }_{ x\rightarrow c }\quad \frac { f'(x) }{ g'(x) }
Right?
So if
{ lim }_{ x\rightarrow 2 }\frac { { x }^{ 2 }+1 }{ x-1 } \quad =\quad 5
Then shouldn't
{ lim }_{ x\rightarrow 2 }\frac { { (x }^{ 2 }+1)' }{ (x-1)' } \quad =\quad 5
Also equal to 5? However, it equals to 4. Can someone help me understand why?