elias001
- 363
- 24
Let ##R## be a UFD. If ##a\mid bc## and ##1_R## is a gcd of ##a## and ##b,## prove that ##a\mid c.##
Solution: Let ##\text{gcd}(a,b)=1_R##, then ##(a,b)\sim 1_R.## Then there exists ##x,y\in R## so that ##ax+by=1_R##. So ##c(ax+by)=c## for some ##c\in R.## Since ##a\mid bc,## implies ##bc=ad## for some ##d\in R.## Then ##c(ax+by)=(ca)x+(bc)y=(ca)x+(ad)y=a(cx+by)=c.## This implies ##a\mid c.##
[Hungerford's soluion:]
Question: I am not exactly sure what Hungerford did. The solution I posted is what I did, I mean as soon as one is given a gcd to two numbers, and the given assumption, the solutions almost screams out automatically after applying the little algebra required from the definition of gcd.
Solution: Let ##\text{gcd}(a,b)=1_R##, then ##(a,b)\sim 1_R.## Then there exists ##x,y\in R## so that ##ax+by=1_R##. So ##c(ax+by)=c## for some ##c\in R.## Since ##a\mid bc,## implies ##bc=ad## for some ##d\in R.## Then ##c(ax+by)=(ca)x+(bc)y=(ca)x+(ad)y=a(cx+by)=c.## This implies ##a\mid c.##
[Hungerford's soluion:]
For some ##d,bc=ad.## if ##a=r_1r_2\cdots r_k,d=z_1z_2\cdots z_n, b=p_1p_2\cdots p_s,## and ##c=q_1q_2 \cdots q_t,## with each ##p_i, q_i, r_i, z_i## irreducible, then ##p_1p_2\cdots p_sq_1q_2\cdots q_t=r_1r_2\cdots r_kz_1z_2\cdots z_n.## So each ##r_i## is an associate of ##p_j## or ##q_j.## But ##r_i## cannot be an associate of any ##p_j## (otherwise ##r_i## would divide the gcd ##1_R## of ##a## and ##b,## which implies that the irreducible ##r_i## is a unit).
Question: I am not exactly sure what Hungerford did. The solution I posted is what I did, I mean as soon as one is given a gcd to two numbers, and the given assumption, the solutions almost screams out automatically after applying the little algebra required from the definition of gcd.
Last edited: