Classical mechanics problem for a free particle

becks1
Messages
1
Reaction score
0
Summary: The initial problem states: Consider a free particle of mass m moving in one space dimension with velocity v0. Its
starting point is at x = x0 = 0 at time t = t0 = 0 and its end point is at x = x1 = v0t1
at time t = t1 > 0. and this info is to do the 3 problems written out.

a) Calculate the action I for this path.
b) Now suppose that the particle has the same initial and final points in space and
time, but now has an initial velocity v1 6= v0 and a nonzero constant acceleration
a. Find a as a function of v1 and give the trajectory x(t). Note that this is still
a free particle with no potential energy, so x(t) will not satisfy the equations of
motion.
c) Find the action I(v1) for this trajectory, Show that dI/dv1 = 0 for the path
which solves the equation of motion. Is this path a maximum, a minimum. or an
inflection point of I(v1)?
 
Physics news on Phys.org
@becks1, please give relevant equations and show some attempt at a solution.
 
  • Like
Likes PhDeezNutz and topsquark
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top