pr3dator said:
Read carefull of words of Einstein.
Your point being? You realize don't you since Einsteins time a lot of progress has been made in understanding QM? One can only assume you are not aware of modern developments that show all the poineers, Einstein, Bohr, Schrodinger etc etc, with the notable exception of Dirac, were wrong.
Read carefully the words of Wienberg:
http://www.fisica.ufmg.br/~dsoares/cosmos/10/weinberg-einsteinsmistakes.pdf
The other mistake that is widely attributed to Einstein is that he was on the wrong side in his famous debate with Niels Bohr over quantum mechanics, starting at the Solvay Congress of 1927 and continuing into the 1930s. In brief, Bohr had presided over the formulation of the Copenhagen interpretation of quantum mechanics, in which it is only possible to calculate the probabilities of the various possible outcomes of experiments. Einstein rejected the notion that the laws of physics could deal with probabilities, famously decreeing that God does not play dice with the cosmos. But history gave its verdict against Einstein quantum mechanics went on from success to success, leaving Einstein on the sidelines. All this familiar story is true, but it leaves out an irony. Bohr's version of quantum mechanics was deeply flawed, but not for the reason Einstein thought. The Copenhagen interpretation describes what happens when an observer makes a measurement, but the observer and the act of measurement are themselves treated classically. This is surely wrong: Physicists and their apparatus must be governed by the same quantum mechanical rules that govern everything else in the universe. But these rules are expressed in terms of a wave-function (or, more precisely, a state vector) that evolves in a perfectly deterministic way. So where do the probabilistic rules of the Copenhagen interpretation come from? Considerable progress has been made in recent years toward the resolution of the problem, which I cannot go into here. It is enough to say that neither Bohr nor Einstein had focused on the real problem with quantum mechanics. The Copenhagen rules clearly work, so they have to be accepted. But this leaves the task of explaining them by applying the deterministic equation for the evolution of the wave-function, the Schrodinger equation, to observers and their apparatus. The difficulty is not that quantum mechanics is probabilistic that is something we apparently just have to live with. The real difficulty is that it is also deterministic, or more precisely, that it combines a probabilistic interpretation with deterministic dynamics.'
I suggest you study some modern QM interpretations eg:
http://quantum.phys.cmu.edu/CHS/histories.html
That is not to say its correct - no interpretation is better than any other - it simply gives a modern take.
But all that is just bye the bye - its getting way off the threads topic and if you want to discuss it start another thread or, correctly, the mods will shut this one down.
pr3dator said:
You are mistaken when you think of particles
Of course - its now known its quantum fields.
But I suspect that is not your point and you have not been exposed to a modern treatment of QM such as Ballentine. I suggest you rectify that ASAP if you want to discuss QM.
Thanks
Bill