Classification of Subatomic Particles: Groups & Examples

  • Thread starter Thread starter Ali Asadullah
  • Start date Start date
  • Tags Tags
    Particles
Ali Asadullah
Messages
99
Reaction score
0
Can anyone please post a table about classification of subatomic particles showing that subatomic particles are divided in that number of groups which are further divided in other groups.
Also please send the examples of each group or subgroup.
 
Physics news on Phys.org
This kind of information is easily found on the web. For example:
http://en.wikipedia.org/wiki/Standard_Model"
http://hyperphysics.phy-astr.gsu.edu/hbase/particles/parcon.html"
 
Last edited by a moderator:
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
5
Views
2K
Replies
21
Views
4K
Replies
5
Views
3K
Replies
3
Views
2K
Replies
19
Views
4K
Replies
13
Views
3K
Back
Top