Clearer Understanding of Permutation and Transpositions

MellyVG257
Messages
2
Reaction score
0
Let α (alpha) all in S_n be a cycle of length l. Prove that if α = τ_1 · · · τ_s, where τ_i are transpositions, then s geq l − 1.

I'm trying to get a better understanding of how to begin proofs. I'm always a little lost when trying to solve them.
I know that I want to somehow show that s is greater than l - 1 cycles. Does this mean I need to find out or show that any l cycle can be written as a product of l-1 cycles? I wrote that

α = τ_1 · · · τ_s = (τ_1 τ_s)(τ_1 τ_s-1)...(τ_1 τ_2)

But does this qualify as a proof for showing that any l cycle can be written as a product of l-1 cycles? Even so, how does this make sense for s geq l -1? Sorry, I'm just trying to understand this more clearly.
 
Physics news on Phys.org
I'm not sure I understand your formulation. Or, it is your partial solution I do not grasp. Do I interpret i correctly if I'd restate it as follows?

Let a be a k-cycle in Sn. Show that if a = t1 * t2 * ... * ts, where the ti are transpositions for 1 = 1, 2, ..., s, then s must be greater than or equal to k - 1.

We have that, if a = (A1, A2, ... ,Ak), then a = (A1, Ak)(A1, Ak-1)...(A1, A2).

Well, this is not a proof, as it only states that there exists a way to express a as a product of k - 1 transpositions. Now, it is easily seen that we can express a as a product of a larger number of such transpositions. Just multiply it by (1, 2)(1, 2), which is the identity. The problem is to show that there is no way to express a as a product of less transpositions. I haven't proven it, but I got a feeling that thinking about how a "moves" the Ai can lead you in the right direction.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top