Proving the Closedness of a Linear Subspace in a Normed Space Using Dual Spaces

  • Thread starter Thread starter math8
  • Start date Start date
  • Tags Tags
    Closed Space
math8
Messages
143
Reaction score
0
Let X be a normed space, F be a closed linear subspace of X,
Let z be in X, z is not in F.
Let S={x+az:a is in the field Phi}=Span of F and z
We show S is closed.

I would define a function f : S--> Phi by f(x+az)=a
and show that |f|< or equal to 1/d where d= distance(z,F)
hence f is in S* (dual of S).
So we let {x_n +a_n z} be a sequence converging to w (x_n is in F,a_n is in Phi). We show w is in S.
We note {f(x_n +a_n z)} is a cauchy sequence.

But I am not sure how to proceed.
 
Physics news on Phys.org
You might also note that for x_n in F, d(x_n+a_n*z,F)=d(a_n*z,F). You want to show x_n and a_n*z are both convergent separately.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top