?
Consider an asteroid moving at 30,000 mph relative to Earth's center. Now which would you rather have happen: collide with the asteroid when you are at rest relative to Earth OR collide with the asteroid when your motion, relative to the asteroid is 0.01 mph? You SEEM to be saying that your understanding of the laws of Physics requires the PHYSICAL results to be the same (otherwise, this would be an experiment to differentiate the two frames). Of course, the flaw here is changing the physics (the motions) rather than just changing the rest frame (accounting).
The CMB is light from the (meaning 'emitted in the') co-moving flow and is expected on average to be "stationary" relative to us...meaning that our velocity (the local cluster's) is, on average, very low relative to the CMB.
Given a bunch of assumptions about the model, what the CMB gives us is a universal standard frame of reference. Its no more absolute than the standard of distance is a mile...or should I have said kilometer? Anyway, it would allow us and an observer a long way from us to agree on assigning a value for the velocities of various astronomical objects we both observe...that's assuming that our averaging techniques are sophisticated enough. (It also assumes that the isotropy and homogeneity of the Universe is fine enough - as I said assumptions about the model).
Let me give you an example (off the top of my head, meaning that its probably got holes in it that I'm too stupid to recognize, but still bear with me). Let's say there IS a absolute reference frame. So, anything at rest wrt this frame will have an absolute (linear) momentum of exactly zero. Will this affect the splat you make with that asteroid? No. As long as its the relative momentum that has to be accounted for, it won't matter. But what if there were some Physical Law that was different for acceleration and deceleration? That is, accelerating (relative to the absolute frame) resulted in (slightly) different results than decelerating (towards absolute motionlessness). Well, suddenly, the Laws of Physics demand an absolute frame. Problem with this idea is that we have seen no indication that its the way our Universe is put together. Of course, we could follow-up and ask:"what if acceleration worked, but changes in acceleration were where this effect showed up?". Or changes of the changes, or... So, you can ask a meaningful question as follows: To what degree of precision have we confirmed that velocity, accleration, and higher time derivatives do not have any inhomogeneity? And now you're talking! (But I have no answer for you, perhaps others here know...)..
This is essentially a Michaelson-Morley type experiment, and they've been done - lots of them. What I DO know is any effect is between zero and a very small number, what I don't know is how small that number is...currently. Our best guess is that its exactly zero, but in the real world, EVERY measured quantity must have a range of values, as well as uncertainty, associated with it. (even things like the inverse square laws, 1/d², how sure are we that the exponent is 2 and not 2.0021? -- guess what? There is research on that!)