Dustinsfl
- 2,217
- 5
How can I get Mathematica to construct a cobb webb for
$$
N_{t+1} = \frac{(1+r)N_t}{1+rN_t}
$$
$$
N_{t+1} = \frac{(1+r)N_t}{1+rN_t}
$$
The discussion focuses on using Mathematica to create a cobweb plot for the function \( N_{t+1} = \frac{(1+r)N_t}{1+rN_t} \). Users shared Mathematica code for the CobwebPlot function but encountered errors related to coordinate pairs and function parameters. Specifically, the error "Coordinate {-1.2, {-0.5467269281236332}} should be a pair of numbers" indicates issues with input values. The discussion emphasizes the importance of ensuring that parameters \( a \), \( b \), and \( r \) are positive and correctly formatted in the function calls.
PREREQUISITESMathematica users, economists modeling dynamic systems, and programmers interested in graphical representations of recursive functions.
dwsmith said:How can I get Mathematica to construct a cobb webb for
$$
N_{t+1} = \frac{(1+r)N_t}{1+rN_t}
$$
[FONT=Courier][B]ClearAll[CobwebPlot][/B]
[FONT=Courier][B]SetAttributes[CobwebPlot, HoldAll][/B]
[FONT=Courier][B]CobwebPlot[f_, start_?NumericQ, n_, {xrange:{xmin_, xmax_}, yrange:{_, _}}]:=Module[{[/B][FONT=Courier][B]cob[/B][FONT=Courier][B], [/B][FONT=Courier][B]x[/B][FONT=Courier][B], [/B][FONT=Courier][B]g1[/B][FONT=Courier][B], [/B][FONT=Courier][B]coor[/B][FONT=Courier][B]},[/B]
[FONT=Courier][B] [/B][FONT=Courier][B]cob[/B][FONT=Courier][B] = NestList[[/B][FONT=Courier][B][I]f[/I][/B][FONT=Courier][B], [/B][FONT=Courier][B][I]start[/I][/B][FONT=Courier][B], [/B][FONT=Courier][B][I]n[/I][/B][FONT=Courier][B]];[/B]
[FONT=Courier][B] [/B][FONT=Courier][B]coor[/B][FONT=Courier][B] = Partition[Riffle[[/B][FONT=Courier][B]cob[/B][FONT=Courier][B], [/B][FONT=Courier][B]cob[/B][FONT=Courier][B]], 2, 1];[/B]
[FONT=Courier][B] [/B][FONT=Courier][B]coor[/B][FONT=Courier][B][[1, 2]] = 0;[/B]
[FONT=Courier][B] [/B]
[FONT=Courier][B] [/B][FONT=Courier][B]g1[/B][FONT=Courier][B] = Graphics[{Red, Line[[/B][FONT=Courier][B]coor[/B][FONT=Courier][B]]}];[/B]
[FONT=Courier][B] Show[{Plot[{[/B][FONT=Courier][B]x[/B][FONT=Courier][B],[/B][FONT=Courier][B][I]f[/I][/B][FONT=Courier][B][[/B][FONT=Courier][B]x[/B][FONT=Courier][B]]},{[/B][FONT=Courier][B]x[/B][FONT=Courier][B],xmin,xmax}, PlotStyle->{{Thick,Black}, Black}, PlotRange->{xrange,yrange}],[/B][FONT=Courier][B]g1[/B][FONT=Courier][B]}]
[/B]
[FONT=Courier][B]CobwebPlot[-4(-1 + [/B][FONT=Courier][B][I]#[/I][/B][FONT=Courier][B]) [/B][FONT=Courier][B][I]#[/I][/B][FONT=Courier][B] -3([/B][FONT=Courier][B][I]#[/I][/B][FONT=Courier][B] -0.6)^3&, -0.318,10, {{-2, 2}, {-1,2}}][/B]
[FONT=Courier][B]][/B]
CobwebPlot[.2 #/(1 + .3 #)^{3} &, -1.2, 50, {{-2, 2}, {-2, 2}}]