Coefficient of a polynomial defined by Legendre polynomial

duc
Messages
9
Reaction score
0

Homework Statement


The polynomial of order ##(l-1)## denoted ## W_{l-1}(x) ## is defined by
## W_{l-1}(x) = \sum_{m=1}^{l} \frac{1}{m} P_{m-1}(x) P_{l-m}(x) ## where ## P_m(x) ## is the Legendre polynomial of first kind. In addition, one can also write
## W_{l-1}(x) = \sum_{n=0}^{l-1} a_n \cdot x^n ##

Find the coefficient ## a_n ## in terms of ## n ## and ## l ##.

2. The attempt at a solution
I think the binomial form of ## P_m(x) ## would help
## P_m(x) = 2^m \cdot \sum_{k=0}^{m} C^{k}_{m} C^{\frac{m+k-1}{2}}_{m} x^k ##, with ## C^{k}_{m} = \frac{m!}{k!(m-k)!} ##. The next thing is to know "how to count" the number of terms in both expressions of ##W_{l-1}(x)##. This is where I stuck at.
 
Last edited:
Physics news on Phys.org
I've found the solution which is of the following form

## a_n = \sum_{m=1}^{l} \frac{1}{m} \sum_{i=0}^{n} a_i^{(m-1)} a_{n-i}^{(l-m)} ##

where a_i^(m-1) is the coefficient corresponding to the power ## x^i ## of the polynomial ## P_{m-1}(x) ## (the same convention for ## P_{l-m}(x) ##).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top