Cohesion in legislatures (game theory)

  • Thread starter Thread starter Shawn Garsed
  • Start date Start date
  • Tags Tags
    Game theory Theory
Shawn Garsed
Messages
50
Reaction score
1

Homework Statement


DT1h3.png


Homework Equations

The Attempt at a Solution


I've got a feeling that the problem is either incomplete or unclear, because so far I've come up with nothing but vague ideas.
If it is clear, then please let me know so this thread can be closed/deleted.
 
Physics news on Phys.org
Nevermind, I solved it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top